Agent Programming Languages:

Programming with Mental Models

Agent Programmeertalen:
Programmeren met Mentale Modellen
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van
doctor aan de Universiteit Utrecht
op gezag van de Rector Magnificus, Prof. Dr. H.O. Voorma,
ingevolge het besluit van het College voor Promoties
in het openbaar te verdedigen
op vrijdag 5 februari 2001 des middags te 4.15 uur

door

Koenraad Victor Hindriks

geboren op 29 december 1971,
te Groningen

promotor: Prof. Dr. J.-J. Ch. Meyer

co-promotoren: Dr. F.S. de Boer
Dr. W. van der Hoek

faculteit Wiskunde en Informatica, Universiteit Utrecht

Cover Design by Pieter Wesseling

ISBN 90-393-25901

sTKs

SIKS Dissertation Series No. 2001-2

The research in this thesis has been carried out under the auspices of SIKS,
the Dutch Graduate School for Information and Knowledge Systems.

CONTENTS

Preface

1 Introduction
1.1 The Metaphor of Intelligent Agents
1.2 Agent-Oriented Programming
1.3 Overview of Thesis

2 The Agent Programming Language 3APL
21 Beliefs
2.2 Personal Digital Assistants
2.3 Actions and Agent Capabilities
2.4 An Abstract Programming Language . . .
2.5 Goalsand Plans

251 BasicGoals
2.5.2 Composed Goals
2.6 Practical Reasoning Rules
2.7 Intelligent Agents
2.8 Summary

3 Operational Semantics

3.1 Labelled Transition Systems
3.2 Execution at the Multi-Agent Level
3.3 Parameter Mechanism, Variables

and Substitutions
3.4 Execution at the Agent Level
3.5 Execution at the Goal Level
3.6 Application of Practical Reasoning Rules
3.7 Conclusion

11
11
13
15
16
17
17
19
21
26
27

ii

CONTENTS

Practical Reasoning Rules 45
4.1 A Classification of Practical Reasoning Rules 45
4.2 Priorities and Labelled Transitions 48
4.3 Goal Trees and Matching Goals 49
4.4 Posting Goals by Condition-Action Rules 53
4.5 Failure, Recovery and Monitoring in 3APL 57
4.5.1 Postfix-Labelling 57
4.5.2 Disruptors.o oo 59
4.5.3 Interrupts L 61
4.6 The Swap Rule and
the Simulation of Parallelism 62
4.7 Conclusion e 63
Communicating Agents 65
5.1 Communication at the Multi-Agent Level 65
5.2 A Formal Semantics for Communication 66
5.3 Information Exchange 67
54 Requests L 73
5.5 Approaches Based on Speech Act Theory 81
5.6 Conclusion e 85
Meeting Scheduling 87
6.1 Constraints on Meetings 87
6.2 The Multi-Stage Negotiation Protocol 88
6.3 Two-agent Meeting Scheduling 89
6.4 Using tell and ask for Meeting Scheduling 91
6.5 Binary Semaphores Lo 95
6.6 Multi-agent Meeting Scheduling 96
6.7 Conclusion 101
An Operational Semantics for AGENTO0 103
7.1 Defining The Agent-Oriented Paradigm 104
7.2 Overview of AGENTO 105
7.3 The Single Agent Core of AGENTO. 107
7.3.1 Beliefs 108
7.32 Actions 108
7.3.3 Variables o 110
7.3.4 Actions and Mental State Conditions 111
7.3.5 Commitment Rules 112
7.3.6 Agent Programs 112
7.4 An Operational Semantics
for the Core of AGENTO 113
7.4.1 Transition Systems 113
7.4.2 Semantics of Mental State Conditions 113
7.4.3 Executing Commitments 114

7.4.4 Applying Commitment Rules 116

CONTENTS

7.5 Decision-Making in AGENTO,
AgentSpeak(L) and 3APL
7.6 Conclusion e

Expressive Power of Agent Languages

8.1 Computations and Observables
8.2 Bisimulating Agents L
8.3 Translation Bisimulation
84 Expressive Power
85 Conclusion

An Embedding of AgentSpeak(L) in 3APL

9.1 Overview of AgentSpeak(L)

9.2 Outline of the Proof

9.3 The Eliminability of Events
9.3.1 The Syntax of AgentSpeak(L)
9.3.2 Semantics of AgentSpeak(L)
9.3.3 The syntax of AgentSpeak(1)
9.3.4 Semantics of AgentSpeak(1)
9.3.5 AgentSpeak(1) bisimulates AgentSpeak(L).

9.4 The Transformation of Intentions to Goals
9.4.1 Syntax of AgentSpeak(2)
9.4.2 Semantics of AgentSpeak(2)
9.4.3 Computations and Observables
9.4.4 AgentSpeak(2) simulates AgentSpeak(1)

9.5 Conclusion e

10 An Embedding of ConGolog in 3APL

10.1 Action Theories in the Situation Calculus
10.1.1 The Situation Calculus
10.1.2 Foundational Axioms
10.1.3 Basic Actions oL oo
10.1.4 Situations, States and Functional Fluents

10.2 The Programming Language ConGolog
10.2.1 Axiomatic Definition

of the Semantics for ConGolog
10.2.2 ConGolog Procedures

10.3 Simulating ConGolog with 3APL
10.3.1 A Labelling of the Transition Relation
10.3.2 Observables and Silent Steps

10.4 Operationalising ConGolog
10.4.1 Operationalising Tests and Complete Theories
10.4.2 Operationalising the m Operator

and Domain Closure
10.4.3 Some Useful Consequences
10.4.4 Basic Actions, Progression and Belief Bases

iii

iv

CONTENTS

10.4.5 Translating ConGolog programs into 3APL agents
10.5 Embedding ConGolog in 3APL
10.6 Procedures
10.7 Parallel Composition
10.8 Discussion

11 The Agent Language GOAL

11.1 The Program

ming Language GOAL

11.1.1 The Operational Semantics of GOAL

11.2 A Personal A
11.3 Possible Exte
11.4 Conclusion

12 Temporal Logic
12.1 Semantics of
12.2 Hoare Triples
12.3 Basic Action

ssistant Example.
nsions of GOAL

for GOAL
GOAL Agents

Theories

12.4 Temporal logic oo
12.5 Proving Agents Correct
12.6 Correctness of the Shopping Agent
12.7 Invariants and Frame Axioms
12.8 Proof Outline

12.9 Conclusion
13 Conclusion
Bibliography
Samenvatting
Curriculum Vitae

Curriculum Vitae

179
181
185
186
190

195
196
198
203
204
205

207
207
208
210
214
217
218
219
221
223

225

232

239

245

244

Preface

In my final year as a student at the University of Groningen, I was lucky enough
to discover the research area of intelligent agents. At that time, I was still mainly
studying theoretical subjects, like the lambda calculus and pure logic. Although
I have learned to appreciate these fields very much, at that time I sometimes
felt that I was lost in a mace of great complexity, and I did not know which
direction to take. Intelligent agents offered a way out of the mace and a subject
to write about for my masters thesis. From that moment on, I knew I wanted
to get a research position as a PhD student...

During the writing of my masters thesis, I found out that at the University
Utrecht Bernd van Linder, a PhD student, was also working on intelligent agents.
On several occasions we exchanged ideas and I became very interested in the
group of John-Jules Meyer, who supervised Bernd. I was fortunate enough to
get the opportunity to work in Utrecht very soon after finishing my thesis.

The past four years I have very much enjoyed working with John-Jules,
Frank de Boer, and Wiebe van der Hoek. John-Jules always has been very
inspiring. His enthusiasm for research is never lacking and his vision of the
future is still much bigger than mine. Frank’s knowledge of concurrency theory
has been invaluable for my research, and because of his typical Dutch humour
we could never take our work too seriously. Wiebe made sure my work lived up
to the standards of academic research, but I probably still do not pay enough
attention to detail... He always was very supportive, and fun to work with.

My fellow PhD students with whom I shared a room have made live at the
university much more pleasant. Rogier, who started just before me, always
helped me out with any problem whatsoever. Paul, who joined us some years
later, liked to enter a discussion just as much as myself. We share many interests,
and our main difference has been that while Paul was writing papers about
games, I was playing them on the Internet. During the last months of my
research, I have enjoyed working with Wieke. She is always able to put things
into a different perspective.

There are many more colleagues and other people to thank. In particular, I
would like to thank Marco for all those pleasant coffee breaks. Richard always
took time to discuss career opportunities, and all other most important things in
live. During my PhD I have been able to meet many other people in computing
science. I was fortunate enough to visit the University of Toronto for a few
months and very much appreciated working together with Hector Levesque and
Yves Lespérance. Of course, it also was always great to see my British colleagues
again at the many agent conferences.

I want to thank the members of my reading committee: Prof. dr. Hector
Levesque, Prof. dr. John-Jules Meyer, Prof. dr. Gerard Renardel de Lavelette,
and Prof. dr. Jan Treur.

In science, simplicity and beauty are two of the highest goals to achieve. If
I did not succeed in achieving both of these goals completely in this thesis, I
am very grateful to Pieter that he did achieve them in the design of the cover
of my thesis.

Finally, I would like to thank Mirjam for being there for me the past four
years. She always knew what I was talking about and with her I could always
share my thoughts and feelings.

Koen Hindriks
Utrecht, December 2000

CHAPTER 1

Introduction

This thesis is about agent-oriented programming. The key concept is that of an
agent. Here, an agent is a computational entity that is viewed as having beliefs,
goals, and plans to achieve those goals. An agent is defined as a computational
entity here to stress the fact that we are interested in building or programming
agent systems. We do not study human or non-software agents in this thesis
(for another view on agents, see Franklin & Graesser (1997)). Instead, our aim
is to introduce and discuss a new programming paradigm: the agent-oriented
programming paradigm.

Each programming paradigm promotes a particular point of view of pro-
gramming. Using a specific view of programming as a programmer means tak-
ing a stance towards programming. Such a stance promotes the use of a set of
concepts that structures the search for a program that is correct and solves the
programming problem. For example, functional programming emphasises the
concept of a function as the basic unit of computation, whereas object-oriented
programming centres around concepts like that of an object and a class. These
concepts provide a programmer with a set of tools to analyse and solve a par-
ticular software problem. The agent-oriented paradigm promotes a new view of
programming that is based on taking an anthropomorphic stance. The concepts
that play a central role in the agent-oriented paradigm thus are derived from
our common sense explanations of human behaviour. A program is viewed as
an intelligent agent and it is conceived of and analysed in terms of the common
sense concepts of an action, a belief, a goal, and a plan. Where these same
concepts in the human case are used to explain and predict the behaviour of
humans, in analogy they are used here to explain and predict the behaviour of
programs.

2 CHAPTER 1. INTRODUCTION

1.1 The Metaphor of Intelligent Agents

Intelligent agents mean many different things to different people. It is therefore
appropriate to explain in somewhat more detail our use of agent terminology.
In our definition of agent in the introduction, a central role is played by the
word ‘viewed’. An agent is any system that is viewed as such. In contrast, many
researchers try to establish what the core content of an agent is. Definitions with
lists of properties that aim at capturing the essence of an agent are prominent
in the literature.

One can find many different types of properties that are associated with
agents. These properties range from quite technical to less formal and more
intuitive properties. To give an example of the former, mobility is a property
that is often mentioned in the context of agents. Mobility of software is a
quite technical issue that involves questions like: ‘How can we realise mobile
software?’, and ‘How can we guarantee security?’, etc. An example of the latter
category that is often used to define agents is the property of autonomy. It has
been proposed to use the property of autonomy as a ‘test’ for agent-hood. The
idea is that by measuring the degree of autonomy, the degree of agent-hood can
be established. As far as the usefulness of concepts is concerned, autonomy is a
concept that stands in sharp contrast with that of mobility. Whereas techniques
for mobility have been developed by now and a clear sense of the problems has
been gained, as far as autonomy is concerned little progress has been made. It
is not clear how to realise autonomy in software, and since it has been difficult
to define the concept itself, the concept has given rise more to confusion than
to insight.

In between, a broad range of other properties are listed. For example, a
property that is also often cited is that of adaptivity. An agent should have
the capability of learning from past experience. Moreover, most researchers
would agree that agents must be social agents that are able to interact and
communicate. On top of that others insist that such agents must have models
of other agents. The list of properties can easily be extended. The reader,
however, may by now already have a sense of the problem. Since it is not
obvious that each and every of these properties must be included in the list of
defining properties of an agent, the following question remains. That is, how
can we decide which properties should be included and which not? The only
way to obtain an answer, it seems, is to try again to define the agent concept
and we end up in a vicious circle.

The attempt to define agents by listing properties has still another effect.
Even the short list of properties that we mentioned already gives the reader a
feeling of high expectations. If agents can do all these things, they must truly
be very powerful. A grand vision of the future then is easily born, but one
still wonders how one should go about realising this vision. It is not at all
clear what implications this list of agent properties has for the development of
software systems.

Nevertheless, we believe there is much potential for agents. Our approach,
however, will focus more on the need for enabling technology which provides for

1.1. THE METAPHOR OF INTELLIGENT AGENTS 3

a platform for realising agent systems. In a sense, we turn things upside-down:
Although agents may not actually possess any of the list of properties that we
mentioned, we believe that by using agent terminology as a conceptual tool in
the design of software a first step towards grander visions may nevertheless have
been achieved.

In our view, it is not so important to provide a definite answer to the question
‘What is an agent?’. As far as we are concerned, agents do not provide us with
powerful new techniques that we can incorporate into our software systems, but
agents do provide a very powerful and intriguing metaphor in the design of such
systems. To put it crudely, just like one cannot point to any concrete ‘objects’
in a computer running an object-oriented program, one cannot point to a ‘real’
agent within a computer running agent software.

The view of agents as a useful and interesting new programming metaphor
differs in important ways from other motivations that are put forward as reasons
why agents are useful. In particular, we do not argue that agent systems are
useful or even needed because of the functionality they provide. In this view,
agent-based systems are supposed to outperform other types of software systems.
We make no such claims about system performance. Our motivation is derived
from the belief that the agent metaphor may enhance and improve the design
of complex software systems.

To be of any use to computer scientists, however, we must make this metaphor
more precise to be able to put it to good use. ‘Intelligent agent’ thus becomes
a technical term in computing science. An agent is a conceptual tool which is
developed in computing science with the purpose of solving the basic problem
in programming:

The basic problem in programming is the management of complexity.
... Program development should begin by focusing attention on the
problem to be solved, postponing considerations of architecture and
language constructs. (Chandy and Misra, 1988)

The agent-oriented programming paradigm aims to support this basic prob-
lem in programming by providing a framework in which all aspects of the design
of a software system are analysed in terms of agent terminology. Agents as a
modelling technique offer support in design, verification, and actual program-
ming of software systems. In the design process, agent concepts are used to
analyse, decompose and design a software system. These same concepts then
can be used for the purpose of verification. Finally, these concepts can be used
to develop an agent programming language. This is the main theme of this the-
sis. In this thesis, we will be preoccupied with the question what a programming
language that is able to support agent design and construction looks like.

In our view, the agent paradigm provides a new modelling technique. The
agent paradigm comes with its own conceptual space to model tasks, problems
and solutions for programs. In this thesis, this conceptual space is confined
to a minimum. The basic concepts included are that of a belief, goal, plan,
and capability of a single agent. This single agent perspective is extended with
communication features which allows the design of multi-agent systems. As we

4 CHAPTER 1. INTRODUCTION

will show throughout the thesis, this minimal set of concepts already provides
for a very rich framework. The use of the agent concept as a metaphor thus
does not conceive of agents as being really intelligent or autonomous. If an agent
is ascribed goal-directed behaviour or a pro-active attitude, for example, this
should be taken in a metaphorical sense. The reader thus is encouraged to take
the agent concept seriously as a programming metaphor.

From our point of view, agents are not so much ”in the eye of the user”,
but instead become part of the training of a designer and programmer. Agent
programming requires a particular design stance and in this sense it might be
said that agents are ”in the eye of the designer”. It is interesting to note
that a design stance and the claim that agents provide a solution to the basic
programming problem yield quite different conclusions as far as the use of agent
terminology is concerned than a typical Al stance. For example, whereas a well-
known quote from McCarthy has it that such terminology is ” most useful when
applied to entities whose structure is very incompletely known”, this is not at all
in the spirit of the approach promoted here. In contrast, agent terminology is
here used for the purpose of the design and complete specification of a software
system.

1.2 Agent-Oriented Programming

Although agents are conceived of here primarily as a modelling technique, we
believe that the success of this modelling technique depends on a supporting
agent programming framework. This is a basic premise of our research and
explains why this thesis is about an agent programming language. The starting
point is, as Shoham puts it, that we must ”make engineering sense out of these
abstract concepts” (Shoham 1991).

There are several ways to make ‘engineering sense’ out of agent concepts.
From the beginning, two approaches have dominated agent research. The first
approach has focused on the design of agent logics for the specification and veri-
fication of such agents. This more theoretical work consists mainly of formal log-
ics. Some examples are BDI logic, the logic of rational agency, and the KARO-
framework (Rao 1996b, Singh 1994, Hoek et al. 1994, Linder et al. 1996, Cohen
& Levesque 1990a). The main contributions of these formal approaches so far
consist of a precise and formal analysis of agent concepts. Their use as specifi-
cation languages, however, remains to be seen since so far no techniques have
been provided for refining specifications in any of these languages to software
systems. On the more practical side, a second approach has focused on the de-
sign of agent architectures. At another level of detail than the more theoretical
research, the design of such architectures has led to many useful insights. At the
same time, it is fair to say, we believe, that most of these agent architectures are
quite complicated and in many cases offer too specialised solutions for building
agents.

For these reasons, we have chosen in this thesis for a third, alternative ap-
proach: the design of an agent programming language. The advantages we see

1.2. AGENT-ORIENTED PROGRAMMING 5

for an agent programming language are that such a language can integrate in
a relatively simple way the basic agent concepts and at the same time offers
a platform for building agent systems. This choice to study agent languages
poses two central problems that we will address in this thesis. First, we need
to answer the question what an agent language is. We will do that by way
of construction and actually design two agent languages. Secondly, we need
to address the relation with the other approaches towards agents. It has been
especially difficult to establish a link between the theoretical agent logics and
agent programming frameworks. In this thesis, we aim to provide such a link
and make a concrete proposal to bridge the gap between theory and practice.

Several agent languages have been proposed in the literature (Dunin-Keplicz
& Treur 1995, Poggi 1995, Rao 19964, Shoham 1993, Thomas 1993). One of the
first agent-oriented programming languages originated with the by now classic
paper of Shoham on agent-oriented programming. The main contribution of this
paper was to illustrate by means of a concrete proposal how a number of agent
concepts can be supported and integrated in a programming framework. The
paper, however, only provides an informal account of the language and does not
provide a formal basis for an agent programming framework. The lack of a clear
and formally defined semantics makes it difficult to formalise the design, specifi-
cation and verification of programs. Other languages are based directly on logic
(Giacomo et al. 1997, Lespérance et al. 1996, Fisher 1994, Wooldridge 1997). In
general, it is very hard to integrate the minimal set of agent concepts outlined
previously into such languages. For example, (Wooldridge 1997) includes the
concept of knowledge but does not include a motivational concept like a desire
or intention.

The need for a formal approach and the requirement that each of the basic
agent concepts must be supported by the agent programming language moti-
vates the design of two new agent languages in this thesis. Our approach is based
on a combination of existing programming concepts from various well-known
paradigms in order to model agent-oriented features. The clear advantage of
this approach is that most of these concepts are well-understood, both from a
theoretical and practical perspective. A second emphasis in our approach is on
formal semantics. We think it is important to provide a formal semantics for
a programming language. There are many reasons for a formal approach. But
one of the more important ones is that a formal approach is the only viable
approach that provides a basis for bridging the gap between agent theory and
practice. Moreover, the formal semantics of a programming language allows a
precise and formal comparison with some other related approaches.

Summarising, to promote this new style of agent-oriented programming, we
think it is important to show at least three things. First of all, we believe
it is important to show that the metaphor of intelligent agents enhances the
programming and design task in particular domains by providing convincing
programming examples which illustrate the power of using this metaphor (This
is not a trivial task, cf. Kautz et al. (1994)). Some preliminary and suggestive
work has been done to show this. Secondly, an agent programming language
which supports the programming of agents should be provided. In this respect,

6 CHAPTER 1. INTRODUCTION

it is particularly important to show how the agent language supports agent-
oriented programming and to be clear about which aspects associated with
agents are supported. For this purpose, an account of intelligent agents which
explicates these notions in a precise and computationally useful way is required.
Finally, we believe it is important to provide a logic of agents to reason about
the agents written in the agent programming language. In this thesis, each of
these issues is studied but our concern will be mainly with the design of an
agent programming language.

1.3 Overview of Thesis

This thesis is divided into three parts. The first part is concerned with the
design and introduction of an agent programming language that includes ca-
pabilities, beliefs, communication and planning. In this language, the concept
of a goal and plan are more or less identified. This language is called 3APL
(pronounced ”triple-a-p-1”). 3APL is a new programming language which incor-
porates features from both imperative and logic programming and also includes
some additional new features, which allow for an elegant description of many
agent-oriented features. From imperative programming the language inherits
the full range of regular programming constructs, including recursive proce-
dures, and a notion of state-based computation. States of agents, however,
are belief or knowledge bases, which are different from the usual variable as-
signments of imperative programming. From logic programming, the language
inherits the proof as computation model as a basic means of computation for
querying the belief base of an agent. These features are well-understood and
provide a solid basis for a structured agent programming language. Moreover,
3APL agents use so-called practical reasoning rules which extend the familiar
recursive rules of imperative programming in several ways. Practical reasoning
rules can be used to monitor and revise the goals of an agent, and provide an
agent with reflective capabilities.

In chapter 2, the programming language 3APL is informally introduced and
its main features are discussed. This chapter introduces the single agent features
and does not yet include communication. In chapter 3, the formal operational
semantics of 3APL is defined. An operational semantics specifies the computa-
tion steps a program can perform. It thus describes the behaviour of a 3APL
agent program. A special feature of 3APL are its so-called practical reason-
ing rules. These rules provide an agent with reflective capabilities and allow
it to modify its current goals and plans. Since these rules are a distinguish-
ing feature of 3APL, a separate chapter is devoted to this feature. In chapter
4, practical reasoning rules are studied in detail and some techniques associ-
ated with these rules are explained. Moreover, the semantics is extended and
priorities on computation steps are introduced. In chapter 5, we then extend
3APL with communication. Different types of communication semantics be-
tween agents are explored and a number of alternatives are proposed. The main
types of communication that are distinguished are that of communicating infor-

1.3. OVERVIEW OF THESIS 7

mation and that of communicating a request. The first part closes with chapter
6 on meeting scheduling. An example 3APL program is presented that solves a
multi-agent meeting scheduling problem.

In part II, the agent language 3APL is compared with a number of other
agent languages from the literature. The emphasis is on a formal analysis
and comparison to clarify the differences and similarities between these lan-
guages. In particular, the languages AGENTO (Shoham 1993), AgentSpeak(L)
(Rao 19964), and ConGolog (Giacomo et al. 2000) are studied. In chapter 7,
a formal semantics for AGENTO is proposed. Since AGENTO does not come
with a formal semantics, we cannot formally relate AGENTO0 and 3APL directly.
However, the semantics that is developed in chapter 7 provides a solid basis for
comparison with respect to the basic features of AGENT0 and 3APL.

In contrast, both AgentSpeak(L) and ConGolog are defined by means of
a formal operational semantics. This provides a basis for rigorous and formal
comparison and in chapter 8 we develop a methodology for such a compari-
son. The operational semantics is taken as a starting point to define a notion
of (bi)simulation. Since an operational semantics defines the behaviour of a
system, the framework for comparison is based on the idea of simulating the
behaviour of agents from one language by agents from another language. By
imposing a number of conditions on the type of simulation, we then obtain a
measure for the expressivity of a programming language. The framework devel-
oped in chapter 8 is used in the next two chapters. In chapter 9, AgentSpeak(L)
is compared with 3APL and it is shown that 3APL agents can simulate Agent-
Speak(L) agents. In chapter 10, a comparison is made between ConGolog and
3APL. Although a number of differences exists between the two languages, by
making two assumptions we are able to simulate ConGolog programs by means
of 3APL agents.

In part ITI, the issue of bridging the gap between theory and practice is taken
up again. In particular, this involves taking a closer look at the logics developed
for agents. One of the most noticeable differences between agent logics and
the agent programming languages studied in the first two parts concerns the
concept of a goal. The motivational component in programming languages like
AGENTO and 3APL is more similar to a plan of action than a goal state that
needs to be achieved. Such an achievement goal expresses a state of affairs that
needs to be established by the agent and is quite different from a plan which is
more like a recipe how to achieve such a state. It is therefore hard to formally
relate BDI-like logics like (Rao 1996b) to agent programming frameworks like
3APL. To establish such a link, in part III a second agent language is designed.
This agent language is called GOAL (for Goal Oriented Agent Language) and
includes a so-called declarative goal that describes a state of affairs that must
be achieved. Again, the language GOAL is designed by using familiar ideas
from the programming language community. In particular, ideas underlying
the programming language UNITY are taken as a starting point (cf. Chandy

8 CHAPTER 1. INTRODUCTION

& Misra (1988)). In chapter 11, the language GOAL is introduced and the
main ideas incorporated in the semantics are explained. More specifically, the
link between the beliefs and the goals of an agent are defined by a so-called
commitment strategy. A commitment strategy determines if and when an agent
may drop a goal. In chapter 12, we then show how the formal semantics for
GOAL of the previous chapter can be used as a basis for a semantics of a
temporal BDI-like logic for GOAL agents. The use of the logic is illustrated by
proving a simple shopping agent correct.

Finally, in chapter 13 we summarise the main contributions of this thesis
and make a number of suggestions for future work. From a more practical
perspective, the agent programming language 3APL offers many roads for future
research and provides a concrete framework for the construction of agents. From
a more theoretical perspective, the agent language GOAL provides an interesting
framework for more thorough research into agent concepts. In particular, the
extension of GOAL to a multi-agent framework remains for future work. In
the end, however, one might hope to combine both languages into a single
agent language and combine the strong points of both languages into a single
framework.

Part I:
The Agent Language 3APL

we have found that the flash of insight that sparks the creation of an algorithm
is often based on operational, and even anthropomorphic, reasoning.

Chandy and Misra

CHAPTER 2

The Agent Programming
Language 3APL

In this chapter, we make the agent concepts that were informally introduced in
the introduction more precise and introduce the programming language 3APL.
3APL is an agent programming language and incorporates the basic notions
like beliefs, goals and plans associated with an agent (cf. also Hindriks et al.
(1998) and Hindriks et al. (1999a)). The syntax of the programming language
is defined and the meaning of the language constructs is informally discussed.

The programming language 3APL combines a logical component with an
operational component where the former provides agents with reasoning capa-
bilities and the latter provides for an execution mechanism for plans. In fact,
3APL combines two different programming paradigms: logic programming and
imperative programming. The usual states of imperative programming, how-
ever, are replaced with logical databases, whereas the assignment of imperative
programming is replaced with updates on such databases. The shift from vari-
able assignments from imperative programming to stores of information thus
can be identified as one of the main differences between traditional imperative
languages and the agent programming language 3APL. It also motivates a shift
in terminology. Traditional states are now called belief states of the agent and
traditional programs are now called goals of the agent. A 3APL agent is defined
in these terms. An agent decides on the basis of its current beliefs and goals
what to do. The action repertoire of an agent defines its capabilities. A set of
so-called practical reasoning rules defines its planning capabilities.

2.1 Beliefs

The beliefs of an agent represent the information that the agent has about the
task it must solve and its environment. Typical information about a task like,
for example, meeting scheduling, is that a meeting has five relevant parameters:

11

12 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

an identifier to denote the subject of the meeting, attendants, date/time, length
and location. The environment typically consists of other agents and an agent
thus may have beliefs about other agents. For example, agent A may believe
that agent B has some meeting at 5pm.

There are many aspects to choosing a knowledge representation language,
and the study of such choices is the area of knowledge representation (Oérez &
Benjamins 1999). In principle, the programming language 3APL can be com-
bined with any type of knowledge representation language. It can be a modal
language, a first order language, or any other language that fits the construction
of particular types of agents best. The knowledge representation language thus
is a plug-in feature of 3APL and the choice of such a language can be decided
upon during the design of an agent system. The only constraint on the rep-
resentation language is that it should come with a clear inference mechanism
for deriving facts from stored facts and associated update mechanisms for up-
dating stored facts. Moreover, a predicate-argument structure for basic facts is
assumed in this thesis.

This thesis is not about knowledge representation, however. Both for tech-
nical reasons and for ease of exposition, we therefore will select a particular
knowledge language that serves our purposes. The only requirement that con-
strains our choice is that the language should be a general purpose knowledge
representation language that comes with the associated machinery for updat-
ing and inspecting the beliefs of an agent. In this thesis, we have chosen first
order languages as the agent knowledge representation language. First order
languages can naturally model many types of information, are well-known and
have a lot of expressive power. There are many good introductions to first or-
der logic, for example, (Mendelson 1979, Enderton 1972). The consequences of
choosing some other formalism for representing knowledge are not explored in
this thesis.

The beliefs of an agent thus are formulas from some first order language L.
A first order language £ is built from a signature ¥ = (Pred, Func) of predicate
symbols Pred and function symbols Func with associated arities, and a countably
infinite set of variables Var with typical elements z,y, 2,...,,.... Terms are
built from Func and Var as usual and we use Term to denote the set of all terms.

Definition 2.1.1 (language of beliefs)
The set of first order formulas £ is inductively defined by

e if p € Pred of arity n and #;,...,t, € Term, then p(t1,...,¢,) € L,

if ti,t € Term, then t; =t € E,

if p € L, then -y € L,

ifpeLand Y € L, then p Ay € L,

if o € £ and z € Var, then Vz(p) € L.

2.2. PERSONAL DIGITAL ASSISTANTS 13

Other logical constructs like disjunction V, implication —, and existential
quantification 3 are defined as the usual abbreviations. A number of special
syntactic classes and concepts are associated with first order languages. First,
a formula of the form p(%) is called an atom; the set of atoms is denoted by At.
The notions of free and bound variable are defined as usual (cf. Lloyd (1987)). A
variable z is bound if it occurs within the scope of some quantifier V z, otherwise
it is free. The set of free variables in an expression e is denoted by Free(e). A
ground atom is an atom without occurrences of free variables; a ground term is
a term without occurrences of free variables. A formula without free variables
is also called a sentence. The usual entailment relation for first order logic is
denoted by = (cf. Mendelson (1979)). Informally, T |= ¢ if ¢ is implied by the
set of sentences 7.

The beliefs are used by the agent to choose an appropriate plan to achieve its
goals in the given circumstances, to make choices left open in a plan, to decide
whether or not to revise a currently adopted plan, and, last but not least, to store
(and retrieve) information that will be useful in the future life of the agent. The
storage, retrieval and manipulation of information in databases has traditionally
been the concern of database theory (Minker 1988), and of Al research areas like
knowledge-based systems and expert systems (Stefik 1995). Therefore, it should
not come as a surprise that there are numerous links between intelligent agent
programming and these other fields of expertise.

Now we are in a position to formally define the concept of a belief base
of an agent. A belief base is defined in terms of the underlying knowledge
representation language, in our case a first order language.

Definition 2.1.2 (belief base)
A belief base o is a consistent set of sentences o C L, i.e. o [~ false.

Note that a belief base is a set of closed formula, i.e. it does not contain
any free variables. Operations to inspect or query and modify a belief base are
introduced below.

2.2 Personal Digital Assistants

One of the more promising applications of intelligent agents are so-called per-
sonal digital assistants (PDAs). A PDA is a computer-based office automation
system that acts on the user’s behalf (Maes 1994, Lennon & Vermeer 1995). The
user can delegate specific tasks to such agents. Typically, the tasks handled by
personal assistants are supposed to be repetitive, boring and time-consuming
tasks (Hoyle & Lueg 1997, Maes 1994, Lennon & Vermeer 1995).! Tasks like
for example news filtering and meeting scheduling are especially amenable to
automatisation by means of personalised agents. Such tasks are user-specific in
the sense that each user has its own particular preferences of how to perform the

I The suggestion that we need so-called intelligent agents for these tasks also suggests that
we need not take this characteristic of intelligence too seriously.

14 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

task. This characteristic is a necessary prerequisite for the use of the person-
alised agents metaphor instead of using more general preprogrammed strategies.
Secondly, these tasks have in common their repetitive nature which allows such
agents to learn how to perform a task by observing the user. Of course, it is also
possible that the user instructs the agent itself and informs the agent directly
of his/her preferences.

Another interesting aspect of the personal assistant metaphor is that it re-
quires an analysis of the user - both through building a personal profile by the
agent software (user modelling) as well as by the agent designer. This type of
model building is necessary for the PDA to be both competent as well as trust-
worthy. The metaphor has been explained as a shift away from the direct manip-
ulation metaphor to the indirect management metaphor (Maes 1994). Whereas
we were used to a state of affairs where we had to tell computer programs step by
step what to do, nowadays we require computer systems to take more initiative
and perform certain routine tasks automaticly without our own intervention.
The personal assistant metaphor thus has given rise to a new approach to user
interface design, and is very useful also in the area of computer-supported co-
operative work (Baecker 1993).

Throughout this thesis, examples of personal assistants are used to illustrate
features of the agent programming languages that are introduced. That is, pieces
of code that may be part of a personal assistant program are provided. To illus-
trate the agent programming language 3APL, a personal assistant that serves
as a time management system is used (cf. Jennings & Jackson (1995)). This
type of personal assistant supports their user with the scheduling of activities.
They may also provide their users with related information like, for example,
information about transportation from one location to another. In chapter 6, a
more complete example of a meeting scheduling system is provided.

Example 2.2.1 In the examples, we use the Prolog-style convention that strings
starting with capital letters are variables. The beliefs of personal assistants in
this example concern the agenda of its user. A predicate meet with five ar-
guments Ident, Time, Length, Location and Attendants, respectively, is used
to keep track of the items in the user’s agenda. For example, the sentence
meet(IA_course,11 : 00,2 : 00, c009, user) states that at 1lam the user has to
teach a course on Intelligent Agents for 2 hours in room ¢009. An integrity
constraint associated with the predicate meet states that items in the agenda
are not allowed to overlap in time. Formally, this is represented by:?

(meet(Id1, T1, Lenl, Locl, A1) A meet(Id2, T2, Len2, Loc2, A2)A
T1< T2< T1+ Lenl)
— Id1 =1d2 AN T1 = T2 A Lenl = Len2 A Locl = Loc2 N A1 = A2

The predicate location(Loc, Time) is used to keep track of the user’s location
at a particular time. The predicate is assumed to be persistent. That is, if
there is no information to the contrary the location of the user at a time ¢’ such

2Throughout this thesis, free first order variables in the examples concerning belief bases
are implicitly universally quantified.

2.3. ACTIONS AND AGENT CAPABILITIES 15

that ¢ < ' is by default assumed to be the same as that of time ¢. Since the
information concerning the location of the user is derived from the activities and
associated locations in the user’s agenda, a closed world assumption associated
with the meet predicate can be used to implement this. In that case, we can
specify the relation between the two predicates as follows:

(meet(Id1, T1, Lenl, Locl, A1) A T1 < Time A A € A1A
(T1< T2 < Time — ~(meet(I1d2, T2, Len2, Loc2, A2) A A € A2))) —
location(A, Loc, Time)

2.3 Actions and Agent Capabilities

To modify its environment, an agent is equipped with a set of basic actions.
Basic actions are one of the types of basic goals in the agent programming
language. They specify the capabilities that an agent has to achieve a particular
state of affairs.

It is important in this context to emphasise that our view of an agent is
motivated by the metaphor based on common sense notions like belief and goal
and an agent is viewed as a mental entity. Consequently, actions are conceived
of as mental actions transforming the mental state of the agent. Although it
may well be that an agent changes its environment through some interface which
depends on the execution of basic actions in the agent language, there is nothing
in the agent language which requires such an interface with an environment
external to the agent. The use of intelligent agents to control robots is an
example where such an interface is required. Personal assistants, like agents
that manage the agenda of their user, however, do not require any interface
to control some external environment. Note, however, that in both cases the
beliefs of an agent represent something external to that agent itself. Blocks and
other objects in the first case, activities, locations and so on, in the second case.

Because a 3APL agent is a mental entity, from the point of view of the pro-
gramming language, basic actions are actions which affect the mental state of
the agent. Basic actions therefore are defined as updates on the beliefs of the
agent. This choice reflects the fact that the beliefs of the agent represent the
environment which may change due to the performance of actions. In corre-
spondence with such changes, the beliefs of the agent are updated.

Definition 2.3.1 (basic actions)

Let Asym be a set of action symbols with typical elements a,a’,...,b,... each
with a given arity. Then a(t,...,%,) is a basic action for any action symbol
a € Asym and terms t,...,t, € Term where n is the arity of a. The set of basic
actions is denoted by Bact.

Example 2.3.2 The personal assistant of our running example is capable of
performing a number of basic actions related to managing an agenda and in-
forming the user about appointments etc.

The action ins(meet(Ident, Time, Len, Loc, Att)) inserts in the agenda that
is maintained in the belief base the item Ident scheduled at time T%me in case

16 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

it does not violate any integrity constraints associated with the agenda. This
action enables the agent to keep the agenda up to date.
To communicate with the user, the action

inform_user(String, Ident, Time, Len, Loc, Att)

is introduced. This action allows the agent to inform the user about an item
that is scheduled in its agenda. String denotes a string which is prefixed to the
output of the parameters concerning the activity.

In general, actions can only be performed if certain conditions hold. These
conditions are called the preconditions of the action. In the previous example,
the precondition of action ins included a consistency constraint. Only if the
item to be inserted does not give rise to conflicts with other scheduled activities
is it possible to insert such a new item. In case an action is executed, it has
certain effects. Such effects may be captured by yet another condition called
the postcondition of the action. The ins action results in a state where the item
is inserted into the agenda. It is possible to formally characterise the pre- and
postconditions, but we do not discuss such formal techniques here. In chapter
10, we will see one example of a technique to specify such conditions based upon
the situation calculus.

2.4 An Abstract Programming Language

3APL is an abstract programming language, in the sense that it does not include
any particular set of concrete actions nor does it dictate the use of a particu-
lar knowledge representation formalism. The choice of the most suitable basic
actions and the choice of the most suitable knowledge representation formalism
need to be settled at design time. In fact, in a multi-agent system each agent can
be equipped with its own set of capabilities and its own expertise on a particular
subject. Even within single agents it is conceivable to use different formalisms
to code the beliefs of an agent or to define the pre- and postconditions of ac-
tions. This introduces interaction and translation problems, however, between
and within agents (see for a treatment of such issues (Eijk et al. 1998)). 3APL
thus provides for a framework for programming agents, and is best conceived of
as a kind of coordination language (Papadopoulos & Arbab 1998) in the sense
that it is a language for coordinating heterogeneous activities and knowledge
representation languages of agents.

The philosophy behind our approach is that agent programming does not
aim so much at replacing other programming formalisms with a more suitable
alternative, but instead should be viewed as offering a high-level framework to
integrate different services programmed in different programming paradigms.
Agents do not replace databases, information retrieval techniques, etc. but
rather facilitate the integration of such diverse systems and techniques in a
coherent fashion.

2.5. GOALS AND PLANS 17

This view of agents already provides for a rudimentary software engineer-
ing methodology. The core of this methodology is the set of agent concepts.
The agent terminology provides conceptual tools that allow the description of
software systems at a high level of abstraction. The agent concepts moreover
are both intuitive and natural to use. Because of their abstract nature, agent
concepts support the design of complex software systems. For the same reason,
however, agent terminology is not universally applicable. Agent concepts, for
example, are not very suitable for things like solving sorting problems, solv-
ing equations, etc. Prime examples where agent concepts are useful concern
business applications and personal assistant applications.

2.5 Goals and Plans

In common sense, and in most logics of agents, the goals of an agent describe
the state of affairs an agent would like to achieve. These types of goals are
declarative or descriptive in nature, and are also called goals-to-be. Declarative
goals do not specify how the agent should go about realising such goals. There
is, however, yet another notion of a goal which does specify a plan of action.
Such goals provide for a procedural perspective and do not focus so much on
the resulting state of affairs. This second type of goal is also called a goal-
to-do, because it specifies a recipe for action that the agent intends to follow.
Goals-to-do are similar to the motivational concept of intention, which has been
analysed by Bratman in terms of plans (Bratman 1987). They represent the
adopted plans of an agent to achieve a particular state.

First, our concern will be to introduce an agent programming language which
incorporates a procedural perspective on goals. In a later chapter, we will then
return to the issue of incorporating declarative goals into an agent language.
From a computational perspective, it is quite natural to focus first on the pro-
cedural type of goal because this notion can be analysed in terms of plans. In
Artificial Intelligence, moreover, the concept of a plan has since long been recog-
nised as similar to that of an imperative program. Goals in this sense thus can
be viewed as a kind of imperative program. In this chapter, therefore, if we
simply write ‘goal’ we mean the procedural type of goal or a plan of action.

2.5.1 Basic Goals

Goals - like imperative programs - are structures built from a set of program-
ming constructs and a set of so-called basic goals. The programming constructs
are used to compose such basic goals, for example, into a sequential order. As
explained previously, the main difference with imperative programming, how-
ever, is that we have replaced imperative assignments with information updates.
The set of basic goals consists of the most simple goals and is different from the
basic constructs in imperative programming.

There are three types of basic goals. First, a basic action is a basic goal. A
basic action is one of the building blocks for constructing a plan and allows the

18 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

agent to adopt a plan to modify its current beliefs. Basic action goals do not
allow the agent to introspect its beliefs.

A second type of basic goal is a test goal ¢? where ¢ is a formula from the
knowledge representation language. A test goal expresses a condition on the
beliefs of the agent. It allows an agent to introspect its beliefs and is evaluated
relative to the current beliefs of the agent. A goal ¢? first of all allows an agent
to find out whether or not it believes ¢, that is, whether or not its current beliefs
entail the formula ¢. Actually, however, things are slightly more complicated
because ¢ may contain free variables and does not have to be a sentence. The
use of free variables in test goals is that it provides for a mechanism to compute
correct instances or bindings for these variables. As in logic programming, a
test thus may be used to derive instances for free variables. Such instances
must be correct in the sense that they must be entailed by the beliefs of the
agent. Because a test binds a value to a variable, it is somewhat similar to an
assignment in imperative programming. The main differences are that a test
goal is evaluated by means of logical proof (as in logic programming), and a test
can only be used to initialise a variable to some value, not to update the value
assigned to a variable.

Example 2.5.1 The test location(user, Loc, Time)? can be used to retrieve the
location of the user at a given time (or, in case a location would already have
been bound to the variable Loc, to retrieve the times the user was or is going
to be at that particular location according to its agenda).

The last type of basic goal is an achievement goal. An achievement goal
simply is an atom from the knowledge representation language £ of the form
p(%). An achievement goal provides for an abstraction mechanism similar to
that of a procedure call in imperative programming. These goals thus are not
themselves plans of actions but must be replaced with an appropriate plan to
achieve a particular goal coded by the atom p(f)

The programming language does not enforce any semantic relation between
an achievement goal p(%) and the belief atom p(f). The meaning of an atom
p(%) in the belief base and an occurrence of that same atom in the goal base thus
are not formally related. For example, if an agent believes that p(%) is the case,
it still may have the achievement goal p(f) too. It is left to the programmer
to see to it that both uses of the same atom are coherent. The use of atoms
as achievement goals thus is very different from the use of atoms as beliefs.
Whereas in the latter case atoms are used to represent and therefore are of a
declarative nature, in the former case they have a procedural meaning.

Example 2.5.2 An example of an achievement goal is
schedule(Ident, Time, Len, Loc, Att)

which may be used for scheduling an activity Ident. A plan to implement this
goal is given below by a practical reasoning rule.

2.5. GOALS AND PLANS 19

2.5.2 Composed Goals

Composed goals are built from basic goals by means of the programming con-
structs for sequential composition, nondeterministic choice and parallel compo-
sition which are well-known programming constructs from imperative program-
ming. Sequential composition allows the specification of a sequence of subgoals
my; 72 which is a plan to first do 7y and after finishing 7 continue with plan 5.
Nondeterministic choice is a construct that allows to specify disjunctive goals
m + 72 which is a plan to do either m; or 2. A goal 7 + 7o is also called a
choice goal. An agent also may have goals that are executed in parallel. Such
parallel goals are denoted by m||m2. Apart from such explicit parallelism, an
agent may also have implicit parallel goals since it may adopt more than one
goal simultaneously.

Definition 2.5.3 (goals)
The set of goals Goal is inductively defined by:

e Bact C Goal,

¢ At C Goal,

o If p € L, then ¢? € Goal,

o If 71,72 € Goal, then (my; m2), (71 + m2), (m1||72) € Goal.

Example 2.5.4 The goal

location(user, Location, 12 : 00)?;
ins(meet(lunch,12 : 00,1 : 00, Location, user))

is an example of a sequential goal composed of a test and a basic action. An
important aspect of the parameter mechanism of 3APL is how different occur-
rences of the same variable in a goal relate to each other. The rule is that the
first occurrence of a free variable in a sequential composition implicitly binds all
later occurrences of that same variable.

Thus, by executing the test in our example goal, a binding for the variable
Location is derived from the current beliefs that denotes the location of the
user at 12am. Let’s assume that the location retrieved is the office of the user.
Since the second occurrence of the variable Location is implicitly bound by the
first occurrence, the value computed by the test for this variable is then used to
instantiate the second occurrence and a lunch at 12am in the office of the user
is inserted in the agenda.

We can define new, useful programming constructs in terms of the program-
ming constructs introduced so far. By using both test goals and nondetermin-
istic choice, for example, we can define a new construct |F.. THEN..ELSE.. as
follows:

IF o THEN 7, ELSE 7m0 Z (075 m11 + —07; 72)

20 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

This conditional programming construct continues with executing m in case (an
instance of) ¢ is entailed by the beliefs of the agent and will execute 72 in case
- is entailed. An important difference with similar conditional constructs in
other languages, is that sometimes neither branch of IF ¢ THEN 7; ELSE 75 is
executed. This happens when neither (an instance of) ¢ nor (an instance of)
- is entailed by the current beliefs of an agent. Since tests are introspective
actions into the beliefs of the agent, sometimes the agent does not have enough
information to decide a test and the conditional action as defined above may
result in a deadlock, i.e. it is not possible to continue execution at this point in
the program. Another type of operation that was not introduced as part of the
programming language is an iteration operator. The language does not include
a construct like the traditional WHILE..DO... Iteration, however, can be defined
in terms of recursive rules which are introduced below.

As is clear from the discussion so far, goals operate on the belief base of an
agent. They both change and derive information from the agent’s beliefs and
their main purpose is in manipulating the beliefs of the agent. 3APL goals,
therefore, can be viewed as belief update operators.

Remark 2.5.5 (note on terminology)

1. The notion of a test goal as well as that of an achievement goal was first
introduced in (Rao 1996a).

2. The notion of a subgoal refers to a part of a larger goal. For example, my
is a subgoal of 71; 7. The concept of a subgoal can formally be defined
by means of the concept of a context that is defined in chapter 4.

3. Note that in the agent language the common sense notions of (adopted)
plans and goals are both represented by expressions from the set of goals
Goal. Thus, the distinction between these two notions is not formally
represented in the language, but can only be made using our common
sense understanding of these notions. In the sequel, we will use either one
of these two notions dependent on which of the two is the more natural
one to use in a given context. Informally, a plan also refers to a sequence
of actions.

4. We use the notion of a goal rather than that of intention. The reason is
that the notion of a goal is a more general notion than that of intention. In-
tentions are usually viewed as some kind of choice with an associated level
of commitment made to that choice ((Cohen & Levesque 19904, Bratman
1987)). The commitment made to a choice determines when an agent will
reconsider or drop its intention. An agent may adopt several commitment
strategies towards its intentions. In the programming language, a goal
does reflect a choice the agent has made. However, there is no explicit
level of commitment associated with each of the goals of an agent. The
commitment strategies or revision strategies of an agent are more or less
implicit in the practical reasoning rules of an agent because these rules

2.6. PRACTICAL REASONING RULES 21

determine when a goal may be modified. The practical reasoning rules of
an agent thus determine whether or not a goal can be considered as an
intention.

2.6 Practical Reasoning Rules

To achieve its goals and to monitor its plans, a 3APL agent uses practical
reasoning rules. Practical reasoning rules supply the agent with a facility to
manipulate its goals. Whereas goals operate on the beliefs of an agent, rules
operate on the goals. Practical reasoning rules can be used to build a plan library
from which an agent can retrieve plans for achieving an achievement goal p(%).
They also provide the means to revise and monitor goals of the agent.

The name practical reasoning rules derives from the role they play in the
operation of intelligent agents. They supply agents with reasoning capabilities
to reflect on their goals. The application of practical reasoning rules is similar
in certain respects to common sense practical inference of plans to achieve goals
as used by human agents. Informally, this type of common sense reasoning can
be paraphrased as follows. From a goal to achieve ¢ and the belief that the
plan 7 is sufficient to achieve ¢, the agent concludes that it is reasonable to
adopt the plan 7. This type of reasoning is also called means-end reasoning.
The goals considered in this type of reasoning are declarative, and only simple
achievement goals are similar to this type of goals in 3APL. Note that in our
explanation of practical reasoning the conclusion of this type of reasoning is
the adoption of a new goal (and not the performance of some action, as some
philosophers claim that the result of practical reasoning is).

Apart from means-end reasoning, an agent may also have to reconsider the
plans it adopted. The reasoning involved in reconsidering one’s goals follows
a similar pattern as the means-end reasoning in the previous paragraph. In-
formally, a commitment to a plan 7 and a belief that the situation requires
replacing this plan with an alternative course of action #', provide the agent
with reasons to conclude that it should adopt ' and remove 7 from its current
goals. We will classify both types of reasoning under the heading of practical
reasoning, and illustrate below how rules are used to implement this type of
reasoning.

In the example patterns of practical reasoning we presented, it is not too
difficult to recognise a type of conditional rule. The practical reasoning rules
we are about to introduce capture the essence of this pattern of reasoning.
Presented with a plan and a belief concerning the current situation, a practical
reasoning rule allows the agent to adopt a new plan which replaces its original
plan. Practical reasoning rules thus code the know-how of an agent.

Because monitoring of plans is a meta-activity unlike the matching of plans
with achievement goals, its technical realisation requires an extension to the
language with a facility to refer to plans themselves. For this purpose, we
introduce so-called goal variables which range over the goals or plans of an
agent. We extend the notion of goals and introduce a new concept of semi-goals

22 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

which are constructed from basic actions, achievement goals, tests, sequential
composition, nondeterministic choice and parallel composition like regular goals,
but which may also include goal variables. The goal variables in semi-goals
should be thought of as place-holders for goals. Also, the notion of a binding is
now extended to include the binding of goals to goal variables.

Definition 2.6.1 (semi-goals)

Let Gvar be a countably infinite set of goal variables (ranging over goals) with
typical elements X, X' such that Gvar N Var = @.

The set of semi-goals SGoal is inductively defined by the syntactic rules from
definition 2.5.3, where Goal is replaced by SGoal, and the rule

e Gvar C SGoal.

The set of practical reasoning rules is built from semi-goals and first order
formulas from the knowledge representation language £. We introduce three
different types of practical reasoning rules.

Definition 2.6.2 (practical reasoning rules)
Let 7y, mp € SGoal be semi-goals, and ¢ € £ be a first order formula. Then the
set of practical reasoning rules PRule is defined by:

o 7, < ¢ | mp € PRule, such that any goal variable X occurring in 7 also
occurs in 7y,

e — ¢ | m € PRule, where 7, € Goal, and

o 7 + ¢ € PRule.

Informally, one can read a practical reasoning rule @ < ¢ | 7' as stating that
if the agent has adopted some goal or plan 7 and believes that ¢ is the case,
then it may consider adopting goal «’ as a new goal. The application of a rule is
based on pattern-matching: A rule 7y, < ¢ | mp applies to a current (sub)goal
7 of an agent if 7 matches with 7. The guard of the rule (more precisely, an
instance of the guard) must also be entailed by the agent’s current beliefs for
a rule to be applicable. A current (sub)goal of an agent that matches with the
head 7, of a rule is replaced by the body of that rule when the rule is applied.
Practical reasoning rules are best conceived of as extending recursive procedures
from imperative programming. They extend recursive rules because they can
also be used to modify plans in arbitrary ways, as we illustrate below, which is
not a feature of recursive procedures.
A practical reasoning rule has the following components:

Definition 2.6.3 (head, body, guard, global and local variables)
Let m + ¢ | 7' be a practical reasoning rule.

e 7 is called the head of the rule,

e 7' is called the body of the rule,

2.6. PRACTICAL REASONING RULES 23

e ¢ is called the guard of the rule,

o the free first order variables in the head of a rule are called the global
variables of the rule,

e all other first order variables in the body of a rule which are not global
are called local variables.

By convention, we write 7, < mp for mp « true | 7. Rules of the form
— ¢ | m are said to have an empty head, whereas rules of the form 7 + ¢
are said to have an empty body. Rules with an empty body are used to drop
goals. Rules with an empty head are used to create new goals independent of
the current goals of an agent.

The distinction between global and local variables is made to separate the
local data-processing in the body by means of the local variables which are
only used in the body, from the global variables which may be used both as
input variables and output variables. Global variables can be used as input
variables to supply data to the body of the rule, and as output variables to
return computed results. When a rule is applied, all its local variables in the
body are renamed to variables which do not occur anywhere else in the goals of
the agent. This renaming provides for an implicit scoping mechanism, similar
to that in logic programming. Note that values that are computed for variables
that only occur in the guard of a rule are not used at all in the remainder of a
computation.

Example 2.6.4 We first give an example of a plan rule which is used to find a
matching plan for the achievement goal schedule(Ident, Time, Len, Loc, Att) of
example 2.5.2 and illustrate the application of this rule to a particular instance
of this goal.

schedule(Ident, Time, Len, Loc, Att)

+ location(user, FromLoc, Time) N\ user € Att |
transport(Means, FromLoc, Loc, DurTrans)?;
ins(meet(Means, Time — DurTrans, Dur Trans, FromLoc, user));
ins(meet(Ident, Time, Len, Loc, Att))

The plan in the body of this rule is to schedule the activity Ident by inserting it in
the agenda at the appropriate time. But the agent also supports the user by au-
tomatically calculating which means of transportation are sufficient to get to the
location of the activity in time and reserving time for travelling in the agenda by
means of the first ins action in the plan. This is achieved by retrieving this infor-
mation by means of the test transport(Means, Fromloc, Loc, DurTrans)? where
Means returns the type of transportation required to get from Fromloc to the
destination Loc and DurTrans denotes the time it takes to get to the destination.

Now suppose that the agent has a goal of scheduling a course on Intelligent
Agents in Utrecht at 11am of one hour:

schedule(IA_course,11 : 00,1 : 00, utrecht, students)

24 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

Moreover, also assume that the agent believes that:

(meet(Id, T, Len, Loc, A) <
(Id = meeting AT =9:00A Len = 1: 00 A Loc = amsterdamA
A = {user, mark}))A

transport(train, amsterdam, utrecht,0 : 45)A

((meet(Id1, T1, Lenl, Locl, Att1) A T1 < TimeA

(T1 < T2 < Time — —meet(1d2, T2, Len2, Loc2, Att2))) —

location(Locl, Time))A
user € students

In that case, the rule for scheduling an activity is applicable. First, the head
of the rule matches with the current achievement goal of the agent; the substi-
tution {Ident = IA_course, Time = 11 : 00, Len = 1 : 00, Loc = wutrecht, Att =
students} is a (most general) unifier of the head of the rule and the current goal
of the agent. Second, because of the closed world assumption associated with
the predicate meet, the agent can derive location(user, amsterdam, 11 : 00) from
its beliefs, which is an instance of the guard of the rule.

All the global variables in the head of the rule are used as input variables in
this example. These input values are used to instantiate the body of the rule.
By replacing its current achievement goal with the new plan the agent ends up
with the new goal:

transport(Means, amsterdam, utrecht, DurTrans)?;
ins(meet(Means, 11 : 00 — DurTrans, Dur Trans, amsterdam, { user}));
ins(meet(IA_course, 11 : 00,1 : 00, utrecht, students))

Note that both the global input variables and the variable FromLoc that occurs
in the guard are instantiated in the body.

The previous example illustrates the use of a simple rule of the form p(#) +
¢ | where p(f) is an achievement goal. This type of rule is similar to a
(recursive) procedure in imperative programming. These rules are useful for
specifying a plan to achieve an achievement goal and are also called plan rules.
A plan rule encodes the procedural knowledge of an agent. A set of such rules
constitutes a plan library which an agent can consult to find plans to achieve
its goals.

Example 2.6.5 We provide two more rules to illustrate the use of recursion.
The purpose of these rules is simply to provide the user with a pre-calculated
list of items in its agenda. Each of these items consists of the activity involved,
and the time, the duration, the location and the attendants of the activity.

inform_list(MeetList) < MeetList = [[Ident, Time, Len, Loc, Att], List] |
inform_user(scheduled :, Ident, Time, Len, Loc, Att);
inform_list(List)

inform_list(MeetList) < MeetList =[] |

2.6. PRACTICAL REASONING RULES 25

The rules recursively inform the user of the consecutive items in the list MeetList.
Note how the second rule which has an empty body is used to deal with the
termination of the recursion. The two rules also illustrate how recursion can be
used to program iteration.

Apart from the plan rules illustrated so far, there are a number of other
types of rules. As we already mentioned, rules with an empty head «+ ¢ | p(%)
can be used for goal creation. Such rules are useful for implementing reactive
behaviour of an agent; moreover, rules of the form 7 < ¢ can be used to drop
goals.

The use of the goal variables resides in the way they support very general
modification of goals. The use of these variables in practical reasoning rules
allows for all kinds of revision and monitoring facilities. Practical reasoning
rules, therefore, provide an agent with reflective capabilities concerning its goals.
In particular, they may be used to deal with failure of a current plan of an agent.

Example 2.6.6 In this example we provide a very simple illustration of the
use of other practical reasoning rules than plan rules and of goal variables. In
chapter 4, we will study in detail the use and expressive power of these rules.

Recall the plan from example 2.6.4 for scheduling a meeting Ident. This plan
first attempts to compute the appropriate means of transportation to get to the
location of the meeting Ident which the agent tries to schedule, then attempts
to insert the activity of travelling and the time it takes in the agenda in the
appropriate place, and finally attempts to schedule the meeting Ident itself.

Of course, this plan will not always succeed. In particular, one case in which
it will fail is when the time of the meeting that is to be scheduled conflicts
with the time of another meeting that already has been scheduled. Now, in
3APL there are two ways of dealing with this failure. On the one hand, there
is the traditional approach which insists that the plan is incorrect and has to
be rewritten to correct the errors in it. On the other hand, in 3APL, there is
a second option to deal with this failure by using practical reasoning rules. In
that case the original plan does not have to be rewritten, and can be viewed as
the correct plan in the normal case. Rules to deal with the failure are added to
deal with the abnormal cases in which the plan would fail.

A practical reasoning rule to deal with the case in which a meeting cannot
be scheduled due to conflicts with already scheduled meetings is presented next.
The guard of this rule implements the condition that the meeting that needs
to be scheduled conflicts with another meeting in the agenda of the user. The
crucial parameter here which needs to be retrieved from the scheduling plan is
the time at which the meeting is supposed to begin. This is retrieved from the
scheduling plan by matching the head of the rule which consists of a goal variable
and an ins action with the scheduling plan. The variable Time then retrieves
the time the meeting is supposed to begin. In the guard, it is checked whether
this time conflicts with another meeting which has already been scheduled. If
that is the case, then the rule is applicable and the original scheduling plan is
replaced by an action to inform the user of an unsuccessful attempt to schedule

26 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

the meeting. In the rule, the goal variable is used to match with the first part
of the scheduling plan which consists of a test and the ins action to schedule
travelling time. Of course, in case the meeting cannot be scheduled these actions
also need to be removed.

X; ins(meet(Ident, Time, Len, Loc, Att))
« meet(Id’, T, Len', Loc', Att')A
((Time < T' < Time + Len) V (T’ < Time < T' + Len')) |
inform_user(failed to schedule :, Ident, Time, Len, Loc, Att)

2.7 Intelligent Agents

Intelligent agents in 3APL are entities which represent their environment by
means of their beliefs, control this environment by means of actions which are
part of their goals or plans, and manipulate their goals using practical reasoning
rules. Goals keep the representation of the environment up to date by perform-
ing belief updates. The dynamic components of an agent are its beliefs and
goals. During the operation of an agent these are the only components which
can change. The set of practical reasoning rules associated with an agent does
not change during the operation of an agent. The expertise of an agent, defined
by the set of basic actions it is able to perform, also remains fixed during the
lifetime of an agent. The dynamic part of an agent program is called the mental
state of the agent. The static part of an agent deals with the specification of
action and planning capabilities.

A mental state consists of two components. The first component is called
the goal base and consists of the set of adopted goals or plans of the agent.
The second component is called the belief base of the agent and consists of the
agent’s current beliefs.

Definition 2.7.1 (mental state)
A mental state is a pair (II, o), where

e IT C Goal is a goal base, i.e. a set of goals, and

e g C L is a belief base.

Note that we do not allow any goal variables in the mental state of an
agent, but only allow goals from Goal which do not contain occurrences of goal
variables. The condition on the body of rules in definition 2.6.2 guarantees goal
variables are never introduced into the goal base.

Convention 2.7.2 We use II to denote a goal base, and o to denote a belief
base. We use I to denote a set of practical reasoning rules, also called a PR-base.

To program an agent means to specify its initial mental state, including its
initial beliefs and goals, and to write a set of practical reasoning rules which
define the know-how of the agent. Thirdly, it is also important to specify the

2.8. SUMMARY 27

basic actions which define the expertise of the agent. An agent may have more
than one goal at any time. Multiple goals are executed in parallel. A 3APL
agent thus is a multi-threaded entity. Finally, an agent has a name to identify
the agent.

Definition 2.7.3 (intelligent agent)
An intelligent agent is a quadruple (a, I, 0o, T') where

e ¢ is the name of the agent,
e Il is the initial goal base,
e 0 is the initial belief base, and

e I'is a PR-base.

Example 2.7.4 As an example agent, consider a personal digital assistant for
managing an agenda. Such an agent program would include the components
discussed in the previous examples.

e the goal base: {maintain_agenda}, where maintain_agenda is a top level
goal to maintain the agenda of the user,

e the belief base contains information about travelling and (a number of)
integrity constraints discussed above:
{transport(train, utrecht, amsterdam,0 : 45),.. .},

e the PR-base contains a number of PR-rules as illustrated in the previous
examples. These rules should be extended with rules to implement the
top level goal maintain_agenda.

2.8 Summary

3APL provides a general framework for programming situated agents. In the
agent programming language 3APL three conceptual levels are distinguished:
beliefs, goals, and practical reasoning rules. At the most basic level, the beliefs
of an agent represent the current situation from the agent’s point of view. At
the second level, the execution of goals operate on the belief base of an agent by
adding and deleting information. At the third level, practical reasoning rules
supply the agent with reflective capabilities to modify its goals. This cleanly
separates the different types of updating. From a more traditional perspective,
the beliefs of the agent correspond to the state of the system and the goal base
of an agent represents the program which is being executed. Because of the
reflective capabilities of agents to modify their goals in arbitrary ways by means
of rules, however, agents are not just programs in the traditional sense, but are
self-modifying programs. This is a distinguishing feature of intelligent agents in
the agent language 3APL.

28 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

Rules

v

|
|
:
|
-» Goals
|
|
|
|
|

T

\J
-+ Beliefs

Figure 2.1: Levels of Symbolic Operators

The three levels of symbolic operators incorporated in 3APL are illustrated
in figure 2.1. The dotted arrows indicate the input from the belief and goal base
that is required to be able to apply operators at higher levels.

A basic architecture is associated with the language as illustrated in figure
2.2. In this basic architecture, different technologies that provide the reasoning
capabilities, suitable for example for dealing with uncertainty, or for diagnosing,
can be integrated, in line with our philosophy that these features are plug-in
features of 3APL agents.

Beliefs Rules

| Y
Sensing —»Effectors

Goals Abilities

Figure 2.2: Agent Architecture

The architecture of the system is based on a modular design to make such
integration as easy as possible. The programming language 3APL itself specifies
the control, the execution of actions, and the application of rules to goals.
In figure 2.2, we have also incorporated input from (sensing) and output to
(effectors) the environment. In a multi-agent setting, these inputs and outputs
may also be thought of as communication channels.

Summarising, 3APL is a combination of imperative and logic programming.
Whereas imperative programming constructs are used to program the usual flow

2.8. SUMMARY 29

of control from imperative programming and update the current beliefs of the
agent by executing basic actions, logic programming implements the querying
of the belief base of the agent and the parameter mechanism of the language
based on computing bindings for variables.

30 CHAPTER 2. THE AGENT PROGRAMMING LANGUAGE 3APL

CHAPTER 3

Operational Semantics

The dynamics of an agent corresponds to changes in the mental state of that
agent. In this chapter, we define the operational semantics of 3APL which for-
malises the dynamics of agents. The semantics specifies how the operation of
an agent affects the mental state of that agent. The semantics we use here is a
transition semantics defined by means of so-called transition systems. Opera-
tional semantics provides a constructive approach to semantics, in contrast with
a denotational semantics which provides a more abstract, mathematical type of
semantics (Tennent 1991).

3.1 Labelled Transition Systems

Transition systems are a means to define the operational semantics of a pro-
gramming language (Plotkin 1981). A transition system consists of a set of
derivation rules for deriving transitions that are associated with an agent. A
transition corresponds to a single computation step. Such derivation rules are
also called transition rules. A set of transition rules can be viewed as an in-
ductive definition of a transition relation —, similar to a definition of a logical
theory by means of logical axioms and derivation rules. The relation — defined
by a transition system is the smallest relation which contains all the axioms of
the system and all conclusions which are derivable by using these axioms and
transition rules. A transition relation is a relation on so-called configurations.
We will encounter different types of configurations that correspond to different
levels of abstraction. A multi-agent level, a single agent level, and a plan or goal
level will be distinguished.

The general format of a transition rule consists of a (possibly empty) set of
premises and a conclusion derivable from these premises. Both premises and
conclusion are transitions. In case the set of premises is empty, the transition
rule is also called an aziom of the transition system. Auxiliary conditions may be
used to select a particular subset of transitions that may be used in a transition

31

32 CHAPTER 3. OPERATIONAL SEMANTICS

rule as premises or conclusion. A transition rule then looks like this:

G —df,...,C, — C}
Cconcl_>0é

conditions
oncl

Most of the time the conditions on the type of transitions allowed as premises
or conclusion are listed above the line.

The set of transition rules associated with each programming construct of a
programming language is a specification of the meaning of that construct. For
example, a transition rule for sequential composition ; that specifies that m; in
m1; 72 must be executed first, defines the (operational) meaning of the sequential
composition. A transition semantics specifies what type of computation steps a
program can perform and indirectly specifies the operations that are required to
execute a program. In fact, a transition semantics can be viewed as specifying an
abstract machine on which agent programs can be executed (Nielson & Nielson
1992).

To distinguish between different types of transitions, we also associate labels
with transitions. A labelled transition looks like

c L

These distinctions of transitions by means of labels serve several purposes. For
example, labels allow an elegant modelling of communication, and in chapter
4 labels will be used to define priorities on computation steps. They will also
be used to establish a number of simulation results with other programming
languages in part II. Besides labels, also other types of information like, for ex-
ample, bindings for variables may be associated with transitions for bookkeeping
purposes.

3.2 Execution at the Multi-Agent Level

We define three transition relations corresponding to three levels of execution.
The first transition relation defines what it means to execute a multi-agent sys-
tem. Multi-agent execution is called execution at the multi-agent level. Multi-
agent execution is defined in terms of single agent execution which is defined
by a second transition relation. Agent execution is called ezecution at the agent
level. This second transition relation, in turn, is defined in terms of a third tran-
sition relation that defines what it means to execute a single goal or plan. Goal
execution is called ezecution at the goal level. Although we define three transi-
tion relations, we will use the same symbol — to denote each of these relations.
The three transition relations are relations on different types of configurations.

In the multi-agent case, a configuration is a set of agents. A multi-agent sys-
tem thus is identified with a set of agents. In a multi-agent system, we assume
that each agent has a unique identity (a name) which distinguishes it from the
other agents. Of course, agents may also differ with respect to other features.
They may have different expertises, use different knowledge representation lan-
guages, and have different responsibilities, tasks and plan libraries.

3.3. PARAMETER MECHANISM, VARIABLES AND SUBSTITUTIONS 33

Definition 3.2.1 (multi-agent system)

A multi-agent system is a finite set M = {A41,...,A,} of intelligent agents
Ay ={a1,1I1,01,T1),..., Ap = {an,I1,,0,,T}) such that for each pair of agents
A;, Aj, i # j we have that a; # q;, that is, agents have different names.

A multi-agent system is executed by executing the agents of the system in
parallel. Semantically, parallelism is modelled by an interleaving semantics.
An interleaving semantics for parallelism interleaves the computation steps of
the agents. Every computation step at the multi-agent level derives from a
single computation step at the agent level. One of the agents in the multi-agent
system is selected for execution, that agent is transformed by executing it, and
accordingly, the multi-agent system is updated by replacing the selected agent
by the resulting agent. At the multi-agent level, we do not associate labels with
transitions. We will not need to distinguish transitions at this level.

Definition 3.2.2 (transition rule for multi-agent systems)
Let {41, Aa,..., Ay} be a multi-agent system.

A; 5 Al for some i,1 <i<mn
Ar A Ay — (A AL, A

The label 7 associated with the transition at the agent level classifies the
transition as a transition internal to the agent. The fact that the transition
is internal to the agent means that the computation step that is involved has
no effects on the states of the other agents. Of course, if an agent would only
perform such 7-transitions it would be acting as if there were no other agents.
In chapter 5, we will extend the basic language with communication primitives
which allow the agents in a multi-agent system to interact.

3.3 Parameter Mechanism, Variables
and Substitutions

Before we can define execution at the agent and goal levels, we need to define
a number of notions related to the parameter mechanism in 3APL. Because
we assume that our agents are equipped with a logical basis - a language for
knowledge representation with an associated inference mechanism - as in logic
programming, we need to define the notion of a substitution. Substitutions play
an important role in the operational semantics of the language and are used
to formally define the parameter mechanism. Since 3APL has two types of
variables, two types of substitutions are defined. We use 6,6',...,v,n to denote
substitutions.

Definition 3.3.1 (substitution for first order variables)

o A substitution 6 for first order variables is a finite set of pairs (also called
bindings) of the form z; = t;, where t; € Term is a term bound to variable
z; € Var , and z; # z; for every i # j, and z; ¢ Free(t;), for any ¢ and j,

34 CHAPTER 3. OPERATIONAL SEMANTICS

e A ground substitution 6 is a substitution such that for every pair z =t € 6
the term ¢ is ground, i.e. Free(t) = &,

e The domain of 8, denoted by dom(6), is the set of variables z for which 0
contains a pair z = t.

From the definition of a substitution, we can derive the notion of an answer:
a substitution 6 is an answer for ¢ relative to a belief base o C £ iff o = ¢f
and dom(0) = Free(yp).

Definition 3.3.2 (substitution for goal variables)

A substitution n for goal variables is a finite set of pairs of the form X /= where
X € Gvar and © € Goal. The domain of 7, denoted by dom(n), is the set of
variables X such that 7 contains a pair X /.

A substitution then is a set consisting of bindings for first order variables as
well as goal variables as defined in definitions 3.3.1 and 3.3.2. A substitution
thus is the union of a substitution for first order variables and goal variables.
The application of a substitution to a syntactic expression is defined informally
as the simultaneous replacement of expressions bound to a variable for that
variable. A formal definition of the application of substitutions to formulas can
be found in (Lloyd 1987)).

Definition 3.3.3 (application of substitution)

Let e be any syntactic expression, and 6 be a substitution. Then ef denotes
the expression where all free variables z in e for which z = ¢ € 6 or variables
X € Gvar for which X/t € 6 are simultaneously replaced with .

3.4 Execution at the Agent Level

A configuration at the agent level simply is an agent and consists of the four
components of an agent. The first component is the name of the agent. The next
two components correspond to the current mental state of an agent, its goal base
and its belief base. The fourth component consists of the rule base of the agent.
Because the set of practical reasoning rules in the rule base remains fixed during
computation, however, we do not explicitly list this part of a configuration nor
do we mention the agent’s name anymore below.

The agent level in the language 3APL consists of the mental state of the
agent, that is, its goal and belief base. At this level, an agent may execute an
action by choosing a plan from its goal base and selecting an action to execute
from this plan. An agent may pick any plan in its current goal base that is
enabled (can be executed), execute it, and update its mental state accordingly.
Alternatively, an agent may select a practical reasoning rule which is applicable
to a goal in its goal base and apply the rule to the goal. The latter mechanism
supplies the agent with reflective capabilities concerning its goals.

Computation steps at the agent level are derived from computation steps at
the goal level. Since computation steps at the goal level are computation steps

3.4. EXECUTION AT THE AGENT LEVEL 35

of a single goal, a configuration at the goal level is a pair (7,) where 7 is a goal
and o is a belief base. Again we suppress the rule base from the configuration.
At the agent level, the set of goals in the goal base of an agent are executed
in parallel. The parallel execution of multiple goals is, as before in the case of
multi-agent systems, modelled by the interleaving of the computation steps of
the different goals.! Because an agent executes multiple goals in parallel, an
agent is a multi-threaded system.

Convention 3.4.1 We use V' C Var to denote an arbitrary set of first order
variables.

Definition 3.4.2 (transition rule for single agents)
Let II = {mo,...,Mi—1,Ti,Tit1,---} C Goal, § be a ground substitution, and
V = Free(Il). Then:

!
(mi, o)y —¢ (m,0")

l
{mo, - mic1, T i1, -- -}, 0) — {70, -« - Tiz1, Ty Tig1,- - -}, 0")

Note the similarity of the transition rule for single agents and the transition
rule which defines computation steps of multi-agent systems. An agent is exe-
cuted by selecting one of its goals and executing the selected goal. The executed
goal consecutively is replaced with the resulting new goal and any changes to
the belief base due to the execution of the goal are passed on to the agent level.

There is no communication through shared variables at the agent level. Oc-
currences of the same free first order variable in two different goals thus are
unrelated. Communication between goals proceeds by means of the shared be-
lief base. Because goals change and inspect the same belief base, the belief base
of an agent from the point of view of a goal is similar to a blackboard. The
beliefs of an agent thus can also be used to communicate information between
goals.

Finally, the purpose of the set V of first order variables in the premise of the
transition rule is explained as follows. Because the application of practical rea-
soning rules may introduce new occurrences of first order variables into the goal
base, as we will see below, we have to take care that no new (implicit) bindings
are created between variables. For this reason, the set of all free variables in
the goal base is a parameter of the transition in the premise, which is used to
prevent the introduction of any new implicit bindings in the transition rule for
the application of practical reasoning rules.

1 An interleaving semantics for the parallel execution of goals provides a useful abstraction
for modelling parallel execution of goals in practice. An interleaving semantics requires that
an implementation of parallelism in the language by true concurrent execution of goals also
provides a strategy for ruling out any possible conflicts which might occur if two or more goals
simultaneously try to access the same data structure (update a particular belief or variable,
in our case). However, an interleaving semantics abstracts from such implementation issues.

36 CHAPTER 3. OPERATIONAL SEMANTICS

3.5 Execution at the Goal Level

In this and the next section, we define execution at the goal level. The tran-
sition rules below define possible computation steps for a single goal given a
current belief base. In this section, transition rules that specify the semantics
of basic actions, test goals, sequential composition, nondeterministic choice and
parallel composition are provided. In the next section, transition rules for the
application of practical reasoning rules are discussed.

Convention 3.5.1 We use E to denote successful termination, and identify
E; 7, E||r and «||E with 7. Moreover, Il U {E} is identified with II. The
symbol E is used to denote the end of execution. Alternatively, £ can be
thought of as the ‘empty goal’.

The basic action repertoire of an agent defines the skills or expertise of
that agent. As discussed in the previous chapter, basic actions are updates on
the belief base of an agent. The semantics for these actions is a parameter of
the transition semantics. We did not specify a fixed set of actions as part of
the language 3APL, but allow the programmer to select and define any set of
actions which are most suitable to him. The semantics of basic actions therefore
is assumed to be given and a transition function is used to abstract from any
specific set of actions. A transition function for basic actions is a mapping from
a basic action and a belief base to a new belief base and defines the type of
update a basic action is.

Definition 3.5.2 (semantics of basic actions)
A transition function T is a (partial) function of type : Bact x £ — L.

Example 3.5.3 The semantics of the action
ins(meet(Ident, Time, Len, Loc, Att))

for a belief base o (with a closed world assumption associated with meet) of the
form

VId, T, Len, Loc, A(meet(Id, T, Len, Loc, A) <>
(Id=ilANT=t1ALen=dlANLoc=I11ANA=al)V...V
(Id=iNANT=tNALen=dNALoc=INANA=aN))A...

can be defined by T (ins(meet(Ident, Time, Len, Loc, Att)),o) = o' where

7
ag =
VId, T, Len, Loc', A(meet(Id, T, Len', Loc', A) <>
(Id=41lAT=t1ALen’ =dlALoc’' =I11NA=4al)V...V
(Id =aN AT =1tN A Len’ = dN A Loc' =IN A A= aN)V
(Id = Ident A T = Time A Len' = Len A Loc' = Loc A A = Att))) A ...

for all ground instances of the variables Ident, Time, Len, Loc, Att such that o'
is consistent; for all belief bases ¢” equivalent to o, define

T (ins(meet(Ident, Time, Len, Loc, Att)),d") = o'

3.5. EXECUTION AT THE GOAL LEVEL 37

; otherwise, 7 is undefined. Informally, this definition specifies that the ins
action expands the belief base with a new belief concerning the agenda if this
is consistent and otherwise the action is not enabled.

A number of constraints are imposed on transition functions. First of all, the
update performed by a basic action on logically equivalent belief bases should
result in logically equivalent belief bases again. That is, if o and ¢’ are log-
ically equivalent, then 7T (a, o) is defined if 7 (a,o') is defined and vice versa.
Moreover, if T (a,o) is defined it must be logically equivalent with 7 (a,d”’).
Secondly, we assume that a transition function is only defined for ground basic
actions, that is, for basic actions without occurrences of free variables. The
reason for this is that it is not clear what the meaning of non-ground ba-
sic actions should be. For example, what does it mean to execute the action
ins(meet(Ident, Time, 1 : 00, utrecht, Att))?

And third, we do not allow updates on functions. For example, if f(a) = b is
a definition of a function f on argument a in the belief base, then no basic action
is allowed to change this definition, into, for example, f(a) = ¢ where ¢ # b. If
it would be allowed to update functions, we could have the following: Suppose,
initially, f(a) = 1 and p(1) A—p(2) holds, and that action a is allowed to update
f(a) such that f(a) = 2. In that case, the goal z = f(a)?; a; p(z)? would only
successfully terminate if z is bound to 1 and not to f(a). If function updating
is allowed, it thus makes a difference in what way is referred to a particular
value, for example, by 1 or f(a). For simplicity, here we prefer a parameter
mechanism with explicit value passing over a mechanism which would only pass
textual references.

Given a transition function 7 which specifies the update performed by a
basic action, we can now define the semantics of basic actions. The execution
of a basic action a(f) amounts to updating the beliefs in accordance with the
transition function. The execution of a basic action does not compute any
bindings for variables which explains the fact that the empty substitution is
associated with a transition due to the execution of a basic action.

Definition 3.5.4 (transition rule for basic actions)

T(a(?),0) =o'
<a(z),0'>v L)IZ’ <E,U')

A test goal p? computes bindings for the free variables in the condition ¢ that
is being tested. It is enabled, i.e. it can be executed, only if some instance of the
condition ¢ is entailed by the current beliefs. If no such instance can be found,
nothing happens and the test is blocked. The bindings that are computed are
recorded in a substitution #. This substitution is associated with the transition
for later reference and then can be used to pass computed bindings on from one
subgoal to another subgoal. A test goal ¢? initialises the free variables in the
condition ¢ and binds a term to a variable, but once a term is bound to a variable
this binding cannot be changed anymore like in imperative programming. The

38 CHAPTER 3. OPERATIONAL SEMANTICS

bindings z = ¢ that are computed are required to be ground, i.e. ¢ is required
to be ground. A test is evaluated relative to the current belief base. From a
logic programming perspective, the belief base can be viewed as a logic program
which is used to compute the bindings. A test does not change the beliefs of
the agent.

Definition 3.5.5 (transition rule for tests)
Let 6 be a ground substitution such that dom(0) = Free(y).

o= b
<50?a0—>V ;9 <E=U>

Example 3.5.6 In case the current belief base of an agent contains the propo-
sition

meet(meeting, 10 : 00,1 : 00, utrecht, { peter, john, user})
then the test
meet(meeting, Time, 1 : 00, utrecht, Att)?

can return the binding Time = 10 : 00. It will return this binding if there is only
one meeting of 1:00 in Utrecht stored in the agenda. If more than one meeting
takes place at the same time and place, also alternative bindings can be returned.
More formally, there may be different answers 8 # 6’ such that both o = ¢
and o = ¢f'; in that case, one of these substitutions is nondeterministically
chosen.

A sequential goal is executed by executing the subgoals consecutively. A
single computation step of the first subgoal is performed first. Any changes
to the belief base due to this computation step are recorded. Any bindings
computed in the step are passed on to the second subgoal. The resulting new
goal consists of the transformed first subgoal sequentially composed with the
second subgoal (to which the computed substitution has been applied). The
substitution does not need to be applied to 7} because we have that 716 = 7]
below.

Definition 3.5.7 (transition rule for sequential composition)

l
(m1,0)v — (m1,0")

(my; o, 0)y —g ()5 ™26, 07)

The bindings computed by a test are used in the remaining computation.
We illustrate this by an example which also illustrates the transition rule for
sequential composition.

3.5. EXECUTION AT THE GOAL LEVEL 39

Example 3.5.8 Consider the sequential goal

location(user, Loc, 10 : 00)7;
meet(Id, 10 : 00, Len, Loc, Att) A\ user € Att?

and assume the location in the belief base at 10:00 is Utrecht since a meeting
with Peter and John is scheduled at that time. Then the first step is to execute
the test location(user, Loc,10 : 00)? which returns a binding Loc = utrecht. The
remaining goal consists of the test meet(Id, 10 : 00, Len, utrecht, Att)?. Evalu-
ating this test with respect to the current belief base then results in bindings
Id = meeting, Len = 1: 00, and Att = {peter, john, user}.

The execution of a nondeterministic choice goal amounts to selecting one of
the subgoals that is enabled, execute this goal, and drop the other subgoal. The
semantics of nondeterministic choice is defined by two transition rules, one rule
in which the left branch of the choice goal is chosen and another rule in which
the right branch of the choice goal is selected.

Definition 3.5.9 (transition rules for non-deterministic choice)

l l
<7T1,0')V —9 <7riao—l> <7r270>V —9 <7réao—l>

1 1
(m1 + m2,0)y —g (7], 07) (1 + m2,0)y —g (mh,07)

As before, the execution of a parallel goal 7 ||m2 is modelled by interleaving.
In this respect, a parallel goal my||m2 is similar to the execution of two single
goals 71 and w3 in the goal base. There is, however, one important difference.
The subgoals in a parallel goal 7 ||m2 communicate through shared variables.

Any bindings that are computed and recorded in a substitution 6 during
the process of executing one of the parallel subgoals are also passed on to the
other subgoal. By applying the computed substitution 6 to the other subgoal
a communication mechanism between multiple goals is created based on the
sharing of variables. This type of communication we will also call communication
at the goal level.

Definition 3.5.10 (transition rules for parallel composition)

l l
<77170')V —9 <71'i,0") <7T270)V —9 (71-570',)

! l
(mi|lma, o) v —0 (millm2b,0") (millma,0)v —p (0|73, 07)

Example 3.5.11 As a simple example to illustrate the communication between
parallel goals, consider the goal p(z)?||del(p(z)) where the subgoal p(z)? com-
municates a value for z to the other subgoal. (Recall a basic action with free
variables cannot be executed). The subgoal p(z)? thus is the producing goal (it
outputs the value) and the other subgoal is the receiving goal. Suppose that a
is bound to z by the test p(z)?. Then the new goal becomes del(p(a)) and by
executing this action p(a) is removed from the agent’s beliefs.

40 CHAPTER 3. OPERATIONAL SEMANTICS

3.6 Application of Practical Reasoning Rules

Practical reasoning rules operate on the goals of an agent. A practical reasoning
rule m, « ¢ | mp is applicable if the head of the rule unifies with a (subgoal
of a) current goal of the agent and the guard is entailed by the current beliefs.
Two transition rules are required to define the application of rules due to the
different nature of rules with an empty head and rules which do not have an
empty head. The semantics of rules with an empty body can be viewed as a
special case of the semantics of rules with nonempty bodies, where the goal
which unifies with the head of such a rule is dropped and this is interpreted
as successful termination. Alternatively, a rule of the form 7, < ¢ can be
identified with 7, < ¢ | E where E is the ‘empty goal’.

In the transition rule that defines the application of a practical reasoning
rule, two notions play an important role: the notion of a variant and the notion
of matching. Both notions apply to expressions. An expression e is a variant of
another expression e’ in case e can be obtained from e’ by renaming of variables
(for a formal definition cf. Lloyd (1987)). The matching of two expressions is
not formally introduced here. For simplicity, we will assume here that two goals
m and my match, denoted by m & my, if they are identical. In chapter 4, a
more precise and formal definition of & is provided.

Definition 3.6.1 (transition rule for rule application)
Let n be a most general unifier for 7 and 7, such that © &f 7,7, and 6 be a
ground substitution such that dom(#) C Free(yn).

o = ¢nb
(m,0)v —¢ (mynb, o)

where 7, < ¢ | mp is a variant of a PR-rule in the PR-base I" of the agent
such that no free variables in the rule occur in V.

The application of a PR-rule defined by the transition rule is explained as
follows. The first step is to check whether or not the current (sub)goal 7 is an
instance of the head 7y, of the rule. If this is the case, there is a most general
unifier with bindings for all goal variables in 7, (because m does not contain
goal variables) and possibly some bindings for first order variables. The bindings
for the first order variables may represent input values supplied to the body of
the rule but may also rename variables. The computation of the substitution 7
is based on pattern-matching. The second step is to check whether the guard
is entailed by the current beliefs. The evaluation of a guard is analogous to the
evaluation of a test, but in the case of a guard the input values which are stored
in the substitution 7 are used first to instantiate the guard. The evaluation of
the guard may compute new bindings 6 for free variables in ¢n. Finally, the
original goal 7 is replaced by the body of the rule which has been instantiated
with the bindings from 7. Since 5 can only contain bindings for first order
variables which do not occur in the goal base of the agent (the rule is a variant),
we do not associate these bindings with the transition; the substitution § which

3.6. APPLICATION OF PRACTICAL REASONING RULES 41

is computed by evaluating the guard of the rule, however, may contain bindings
for variables in the goal base since 7 may have renamed variables in the rule
to variables that occur in the goal base. Therefore, 6 is associated with the
computation step.

We remark here that the restriction on goal variables (cf. definition 2.6.2)
such that all goal variables in the body of a rule must also occur in the head of
the rule implies that no goal variables are introduced into the goal base of an
agent by means of rule application, because the most general unifier 1 binds all
goal variables to goals.

The transition rule for PR-rule application only specifies how to apply a rule
to a goal. It does not specify, however, which applicable rule - in case there is
more than one - should be applied. It also does not determine which substitution
0 is applied (in case there are 6 # 8' such that o |= ¢nf and o = ¢né’).

Special care needs to be taken to avoid introducing any new implicit bindings
between variables by applying a rule and replacing a goal by the body of a rule.
The set V is used to prevent this. V consists of all the free first order variables
of the current goal base. The introduction of new implicit bindings is precluded
by the requirement that a variant of a practical reasoning rule must be used in
which new variables - which do not occur in the current goal base - have been
substituted for the free variables.

Example 3.6.2 We illustrate what can go wrong if variables in a rule are not
renamed appropriately. Recall the rule for scheduling an activity from example
2.6.4:

schedule(Ident, Time, Len, Loc, Att)

 location(user, FromLoc, Time) A user € Att |
transport(Means, FromLoc, Loc, DurTrans)?;
ins(meet(Means, Time — DurTrans, DurTrans, FromLoc, user));
ins(meet(Ident, Time, Len, Loc, Att))

Now suppose one of the current goals of the agent is:

schedule(IA_course,11 : 00,1 : 00, utrecht, students);
transport(Means, utrecht, amsterdam, DurTrans)?;

and among other things the agent believes: location(user, utrecht,11 : 00) A
user € students.

In that case, if we do not rename the variables in the plan rule for scheduling
a meeting, then by applying this rule to the goal we would end up with the
following new plan, in which the variable Fromloc has been instantiated with
the computed binding Fromloc = utrecht:

transport(Means, utrecht, utrecht, Dur Trans)?;
ins(meet(Means, 11 : 00 — DurTrans, DurTrans, utrecht, user));
ins(meet(IA_course, 11 : 00,1 : 00, utrecht, students));
transport(Means, utrecht, amsterdam, DurTrans)?;

42 CHAPTER 3. OPERATIONAL SEMANTICS

In the resulting plan, an implicit binding is introduced between the first and
second occurrence of the variable Means and the first and second occurrence of
the variable DurTrans. However, the type of transportation required to get from
Utrecht to Utrecht (none) and the time it takes (none) are obviously different
from the type of transportation required to get from Utrecht to Amsterdam
(train, bus, etc.) and the time it takes. No link between these different entities
was intended, and would not have been introduced if the variables in the rule
would have been renamed appropriately.

Example 3.6.3 We illustrate the application of the practical reasoning rule
from example 2.6.6 to deal with a failure of the scheduling of an activity. For
ease of exposition, we repeat the practical reasoning rule to deal with a failure
to schedule the time needed for travelling first.

X; ins(meet(Ident, Time, Len, Loc, Att))
+ meet(Id', T', Len', Loc', Att")A
((Time < T' < Time + Len) V (T' < Time < T' + Len’)) |
inform_user(failed to schedule :, Ident, Time, Len, Loc, Att)

To illustrate the application of this failure rule, suppose that the agent has
applied the plan rule for scheduling a meeting to the scheduling goal of exam-
ple 2.6.4, already has executed the test in that plan, and ended up with the
remaining goal:

ins(meet(train, 10 : 15,0 : 45, amsterdam, user));
ins(meet(IA_course, 11 : 00,1 : 00, utrecht, students))

To create a situation where a conflict arises if the course would be scheduled,
assuming that the user is a member of students, also suppose that the agent
believes that:

meet(meeting, 11 : 30,1 : 30, utrecht, { peter, user})

It is clear that the agent cannot schedule the course into the agenda because of
the meeting that already has been scheduled at 11:30. To see how the failure
rule deals with this, first note that the head of the failure rule can be unified
with the (remaining part of the) scheduling plan. The most general unifier
n is {Ident = IA_course, Time = 11:00,Len = 1:00, Loc = utrecht, Att =
students, X [ins(meet(train, 10 : 15,0 : 45, amsterdam, user))}. Note that this
unifier also contains a binding for the goal variable X. The second step is to
check whether an instance of the guard is entailed by the agent’s beliefs. It is
not difficult to see that the agent’s beliefs entail

meet(meeting, 11 : 30,1 : 30, utrecht, { peter, user})A
((11:00 < 11:30 < 11:00+ 1: 00)V
(11:30<11:00 < 11:30+ 1 : 30))

which is an instance of the guard (note that variable Time and Len are bound
by the unifier). The guard thus returns a substitution § which binds the

3.7. CONCLUSION 43

variables Id', T', Len', Loc', Att' in the guard:

0 = {Id' = meeting, T' =11 : 30, Len' =1 : 30, Loc' = utrecht,
Att' = {peter, user}}

Therefore, the failure rule is applicable and in the third and last step the original
goal consisting of the two ins actions is replaced by the body of the rule, where
free variables are instantiated by nf. The resulting goal is:

inform_user(failed to schedule:, IA_course,11: 00,1 : 00,
utrecht, students)

which informs the user that the agent was unable to schedule the course in the
agenda. (Note that in this example it is unnecessary to rename any variables in
the failure rule.)

The last transition rule specifies the semantics of rules with an empty head.
Most of the details are analogous to that of the transition rule for rules with
a non-empty head. The main difference is that there is no unification with a
current (sub)goal of the agent involved. Condition-action rules add new goals
to the current goal base. Because the creation of a new goal changes the goal
base of an agent, the semantics of condition-action rules needs to be specified
at the agent level and not at the goal level.

Definition 3.6.4 (transition rule for the application of condition-action rules)
Let II be a goal base and € be a ground substitution such that dom(6) = Free(yp).

o= b
(I, o) — (ITU {76}, 0)

where < ¢ | m, €T is a condition-action rule in the PR-base of the agent.

No variant of a condition-action rule is used in the application of such a rule.
There is no need to do so because there is no communication between free first
order variables in different goals, and no interference between such variables can
occur. The fact that there is no need to use a variant also has the advantage
that multiple applications of a condition-action rule do not introduce multiple
copies of the ‘same’ goal into the goal base due to the set interpretation of the
goal base.

3.7 Conclusion

In this chapter, a detailed discussion of the operational semantics of the agent
language 3APL has been presented. The formalism of transition systems was
introduced, including the concept of labelling. Transitions correspond to com-
putation steps of agents. In a labelled transition system, labels can be associated
with transitions. The operational semantics of 3APL consists of three different

44 CHAPTER 3. OPERATIONAL SEMANTICS

levels. At the multi-agent level, the execution of multiple agents is formalised.
At the agent level, the execution of multiple goals in the goal base of a single

agent is specified. Finally, at the goal level the execution of individual goals is
defined.

CHAPTER 4

Practical Reasoning Rules

The aim of this chapter is to introduce a number of techniques and tools for
programming with practical reasoning rules. We study the semantics and the use
of practical reasoning rules in more detail. The semantics of practical reasoning
rules depends on a notion of matching that is made precise by means of so-
called goal trees, which are a different representation for goals. It is useful to
distinguish practical reasoning rules according to their purpose, and we propose
an intuitive classification to this end. Different priorities are associated with the
different classes. It is also shown how to integrate the concept of priority into
the operational semantics. Several illustrations of the use of rules are provided.
It is shown that practical reasoning rules can be used for creating new goals,
and a technique for programming with condition-action rules is introduced. The
use of rules, in particular for dealing with failure, monitoring and recovery, is
investigated. A technique called postfix-labelling is introduced that facilitates
the programming with practical reasoning rules with goal variables. Finally, we
show how parallelism can be simulated by practical reasoning rules.

4.1 A Classification of Practical Reasoning Rules

Practical reasoning rules in 3APL serve a number of purposes. They can be
used by the agent to find a plan to achieve one of its (achievement) goals. But
these rules also allow an agent to revise its goals in almost any way it wants.
The use of goal variables in practical reasoning rules provides an agent with
reflective capabilities concerning its goals and adopted plans.

Tt is useful to classify different types of rules into different classes according to
their purpose. Such a classification illustrates some of the ideas that motivated
the introduction of these rules and may provide a guide for their use. Moreover,
the relation between different classes of rules can be studied and we may, for
example, assign different priorities to each class. The classification that we
propose is based on common sense considerations. Therefore, we believe, it

45

46 CHAPTER 4. PRACTICAL REASONING RULES

both supports and extends the application of the metaphor of intelligent agents
for designing agents. The classification also illustrates the expressive power of
practical reasoning rules (what can be done with rules).

Our classification of practical reasoning rules is a simple and intuitive one.
It is partly based on the syntactic structure of rules and highlights the close
correspondence between the syntactic structure and the use of rules. Of course,
the classification is just one out of several alternatives, and is not derived directly
from the agent programming language itself. Moreover, although it is quite
natural to propose a classification that has a close correspondence with the
syntactic structure of rules, it is not sound to conclude from this that there is a
one-to-one correspondence of the form of a rule and its purpose. Nevertheless,
we think that the classification is one of the more natural and useful ones in
practice. In the classification, four types of rules are distinguished:

e the class F of failure rules,

o the class P of plan rules,

e the class O of optimisation rules, and
e the class C of condition-action rules.

Different purposes are associated with each class. In short, failure rules are
designed for failure handling, plan rules for finding plans, optimisation rules
for optimising current plans, and condition-action rules allow the agent to re-
spond to the current situation and take advantage of any available opportunities.
Based upon this classification, it is possible to impose an intuitive and logical
order on practical reasoning rules. We propose the following partial ordering:
F >P,P>0,P >R (no other pairs are included in the relation >). Of
course, alternative orderings are conceivable. But the ordering makes sense and
can be motivated by the slogan ‘safety first’. We now motivate the classification
and priority ordering by discussing the different purposes associated with each
class.

The highest priority is assigned to the class of failure rules. Failure rules can
be used to revise plans that were adopted to achieve a particular goal. Revision
is in order in case the means to achieve one of the agent’s goals are no longer
appropriate in the current situation the agent believes it is in. The syntactic
form of failure rules is 7, « ¢ | mp where 7 is any semi-goal (cf. definition
2.6.1) except for an achievement goal. The semi-goal 7;, determines the class
of plans that are up for revision and the guard ¢ of the failure rule determines
in what situation revision is required. The high priority that is assigned to the
class of failure rules stems from the fact that we first of all want our agents
to behave in a safe way and failure rules exactly serve this purpose of avoiding
failure, or cleaning up after failure.

Generally speaking, failure is due to one of two things: (i) lack of knowledge
resources, and (ii) lack of control over the environment. Lack of knowledge re-
sources and lack of control are features of any situated agent which must achieve
its goals in a complex environment. Moreover, these features interact with each

4.1. A CLASSIFICATION OF PRACTICAL REASONING RULES 47

other: for example, a lack of information may be the cause of a lack of control,
and vice versa, a lack of control may be the cause of a lack of information,
because changes in the environment most of the time are unpredictable when
there is a lack of control over the environment.

In general, there are three methods of responding to a (possible) failure:
(i) the agent might re-plan from scratch and try to achieve the same goal in
some other way, (ii) the agent might repair an adopted plan to accomplish a
goal and execute this modified plan, and (iii) the agent might drop (part of) its
goals. The type of response is embodied in the body 7 of the failure rule. For
example, a failure due to the fact that a precondition of an adopted plan does
not hold might be dealt with by interrupting the plan and inserting a plan for
establishing the missing preconditions. Thus, a repair plan may be a suitable
approach for missing preconditions and in that case the body of a failure rule
might look like Ty = Tyepair; T Where Trepgir is the repair plan and mj the
original goal.

After dealing with behaviour that might lead to failure, an agent should use
its time to find the appropriate means to achieve its achievement goals. The
class of plan rules exactly serves this purpose. The syntactic form of plan rules
is p(f) < ¢ | 7. Plan rules provide a plan in the body of the rule to achieve the
achievement goal in the head of the rule. The set of such rules in the rule base
of an agent constitutes a plan library that the agent can consult to find a plan
for an achievement goal. The priority that is assigned to plan rules stems from
our concern that safety should be guaranteed first, and that only after this has
been accomplished the agent should spent time deliberating about the means
how to achieve its achievement goals. Nevertheless, planning may be the most
natural and in any case a necessary mode of functioning of an agent.

The lowest priority is assigned to the class of optimisation and the class of
condition-action rules. The syntactic form of optimisation rules is wp + ¢ |
where 7}, is a semi-goal except for an achievement goal. The form of optimisation
rules thus is the same as that of failure rules. On the basis of their purpose,
dealing with failure or with optimisation, respectively, it seems not possible
to derive different syntactic forms for the two types of rules. The purpose of
optimisation rules is to improve the performance of an agent. An optimisation
rule is useful in case the means (represented by the head of the rule) to achieve
a goal are believed to be suboptimal (indicated by the guard of the rule) and a
more optimal plan (the body of the rule) to achieve the same goal is present.
Presumably, without these types of rules nothing would go wrong, but more
costs would be induced by the agent’s current plan than necessary. If the agent
has enough time to reconsider adopted plans, optimisation rules can be used to
optimise the agent’s actions.

The class of condition-action rules consists of rules with an empty head. Its
syntactic form thus is ¢ ¢ | 7. The application of condition-action rules does
not depend on the current goals of an agent but only on the current beliefs of
an agent. The guard of the rule determines in what situation the plan 7 is ap-
propriate. Condition-action rules thus allow an agent to respond to particular
situations. For example, a condition-action rule can be used by a personal assis-

48 CHAPTER 4. PRACTICAL REASONING RULES

tant that manages the agenda of its user to inform the user of an opportunity to
go to a highly recommended concert. Condition-action rules thus can be used
as a means to exploit opportunities in the environment of the agent, but in this
view should not use any resources (time, etc.) which are needed to deal with
either failure or planning.

The classification can be used to design a particular agent architecture that
specifies when an agent should act and when it should deliberate upon its goals.
Some implications for such an architecture can be derived from our classification.
Because the application of failure rules is time-critical since they serve to avoid or
recover from failure, we argue here that it is necessary to apply all the applicable
rules of this class in one cycle of an interpreter. In contrast, there is no need
to apply as many as possible plan or optimisation rules. For planning and
optimisation, a least commitment strategy (cf. below) seems more appropriate
and a single rule can be selected from the latter classes in case no failure rules
are applicable. The application of condition-action rules depends very much on
the conditions and the opportunities associated with these conditions. Different
degrees of urgency might be associated with such rules individually.

4.2 Priorities and Labelled Transitions

One way of implementing priorities is to build an architecture on top of the
agent language which schedules the application of rules and the execution of
actions in such a way that the priorities are accounted for. Another possibility
to impose an order on the computation steps that are performed is to directly
integrate such priorities into the semantics. This possibility will be explored
here.

A simple and elegant way to integrate priorities into the semantics is to
associate priorities with the labels associated with transitions. The idea is to
prefer transitions with a specific label over transitions that are assigned other
labels. For example, we can associate different labels with the application of
practical reasoning rules of different classes. To do that, we slightly have to
modify the transition rules for the application of rules that were introduced
previously. To implement the idea we associate with the application of failure
rules a label f, with plan rules a p, with that of condition-action rules a ¢, and
with optimisation rules an 0. The remaining transitions are labelled with 7 as
before.

The priorities of the previous section now can be associated with the labels.
Technically, priorities on labels need to be taken into account at the agent level.
At this level, computation steps with the highest associated level should be
selected and performed first. The agent level transition rule then should be
modified to incorporate this preference. This can be done by requiring that the
priorities are obeyed in the premise of the transition rule.

Definition 4.2.1 (agent level transition rule with priorities)
Let IT = {mo,...,Mi—1,Ti, Tit1,.--} C Goal, 8,8 be ground substitutions, V =

4.3. GOAL TREES AND MATCHING GOALS 49

Free(II), and > be an ordering on labels. Then:

(mi,0)v —3¢ (nl,0"), and Bl > 1,j,0" such that {r;,0)y —¢ (r},0")

l
oy e oy Mim 1, iy i1y - -}, 0) — {0y o - T, Ty i1y - - - 15,07)

The transition rule directly incorporates priorities into the operational se-
mantics. To implement the order of the previous section, we need to associate
the following order with the labels: a label f has higher priority than p (f > p),
and p has a higher than o and ¢ (p > 0,p > ¢,0 # ¢, ¢ # 0). The 7-label associ-
ated with the execution of actions and tests, however, should also be accounted
for in the order and this leaves us with a choice. A natural choice is to assign
the same priority to action execution as to optimisation rules. This means that
action execution, and the application of optimisation and condition-action rules
have the same priority here. Throughout this chapter, we use this ordering.

4.3 Goal Trees and Matching Goals

Some of the uses of practical reasoning rules have been discussed in section 4.1,
but some of the technical details of applying rules still need further clarification.
In particular, the concept of matching used in definition 3.6.1 must be made
more precise. To this end, we introduce the notion of a goal tree and define the
concept of matching goals in terms of this notion.

Basically, a goal tree is a tree-representation of the syntactic structure of a
semi-goal. A goal tree of a semi-goal is a labelled tree that represents the task
sequence information, the choice points and the parallel subgoals in the semi-
goal. The internal nodes of a goal tree are labelled with the program constructs
;, + and || to represent this information. An internal node in a goal tree that is
labelled with + is called a choice point (of the corresponding goal). The leaves
of a goal tree are labelled with basic goals and goal variables. A goal tree can be
recursively generated from the syntactic structure of a semi-goal. To represent
the ‘empty tree’, we use the ‘empty goal’ E.

Each goal has an associated canonical goal tree that corresponds to that
goal. There may, however, also be other goal trees that are associated with
a goal than its canonical goal tree. This is due to the fact that we want to
disregard the order of subgoals in a choice or parallel goal. Consequently, in a
goal tree the order of the branches from a choice point or parallel node can be
switched to obtain yet another goal tree representing one and the same goal.
The identification of such goal trees as representants of one and the same goal
is made to guarantee the commutativity of the nondeterministic choice + and
parallel composition ||.

Definition 4.3.1 (canonical goal tree associated with)
Let m € SGoal be a semi-goal. The canonical goal tree T, associated with 7 is
inductively defined as a labelled tree as follows:

(i) If is the empty goal E, then T, = E,

50 CHAPTER 4. PRACTICAL REASONING RULES

(ii) If 7 is a basic action a(%), a test ¢?, an achievement goal p(%), or a goal
variable X, then T, = (E,w, E),

(iii) If 7 = my; 2 is a sequentially composed goal, then Ty = (T 3, Tra)s

(iv) If 7 = m + m2 is a choice goal, then T = (Tr,,+, Try),

(v) If # = m||m2 is a parallel goal, then T = (T, ||, Tr.)-

The goal tree T corresponding to a goal « is called the canonical represen-
tant of w. Because we want to disregard the order of choice points and subgoals
of parallel nodes in a goal tree, however, a goal may have more than one rep-
resentant. All the representants of a goal are captured by the forest of tree
representants of the goal which is derived by the operator r from the canonical
tree representant.

Definition 4.3.2 (forest of tree representants)
The forest of tree representants of w, r(Ty), is defined by:

o r((E,l,E)) = {(E,!, E)}, where the root label [of the tree may be a basic
action a(?), a test ©?, an achievement goal p(%), or a goal variable X,

L r((Tﬂ'17;7 Tﬂ'z)) = {(Tla;a TZ) | Tl € T(Tﬂ'l)ﬂ T2 € T(Twz)}a
L r(<T7r1;+7 Tﬂ'z)) = {<T1:+7 T2)7 <T2;+; T1> | Tl € T(T7r1); T2 € T(Tﬂz)}a
o 7((Trps |l Tro)) = {(T1, [I, T2), (T2 ||, To) | T € 7(Try), T € 7(Twy)}-

(b) (c)
Figure 4.1: Three Goal Trees

In figure 4.1, the concept of a canonical representant is illustrated. Figure
4.1(a) depicts the canonical goal tree of the goal (a(s)+b(%)); (¢?; (p(z); a(u))),
figure 4.1(b) depicts the canonical representant of b(¢) + a(s) and, figure 4.1(c)
canonically represents (a(s) + b(t)); ¢?.

A practical reasoning rule is applicable to a goal 7 if the head 7, of the rule
matches with m and the guard ¢ of the rule is implied by the belief base of the
agent. The notion of matching denoted by & in definition 3.6.1 is now formally
defined by means of goal trees. Note that & is an a-symmetric relation.

4.3. GOAL TREES AND MATCHING GOALS 51

Definition 4.3.3 (definition of &)
Let 71,72 be two semi-goals. Then:

™ R’i o iff T7T2 € T(Tﬁl)

By the definition of matching, a rule cannot distinguish the syntactic order
of the two branches of a choice goal or subgoals of a parallel node. In other
words, parallel composition and nondeterministic choice are commutative and
thus the meaning of a goal my + 73, for example, is the same as that of o +m1. It
is not just the case that these goals behave similarly, but they behave similarly
i any context.

The concept of a context is defined in terms of semi-goals. A context is
a semi-goal with exactly one occurrence of a goal variable. Thus, 7; X and
(m + X); ma are contexts if m, 7, w2 are goals. A context is written like C[X]
and the substitution of a semi-goal 7 for the goal variable X is written as C[x].
For example, if C[X]is (71 + X); w2, then C[n] is m1 + m; m2.

A choice goal w1 + 7o thus is equivalent in any context to 72 + 71, and a goal
m1||m2 is equivalent to ma||w;. This is formally stated in the next theorem. The
techniques to prove this theorem and a definition of the notion of bisimilarity
is presented in chapter 8. Informally, the theorem states that a goal C[mr; +)
and a goal C[my + m] or a goal C[m ||m2] and a goal C[mz||m] produce exactly
the same observable events and cannot be distinguished from each other.

Theorem 4.3.4 (commutativity of nondeterministic choice)
For any context, C[X], C[m + 2] is bisimilar to C[my + m] and C[my||m2] is
bisimilar to C[ms||m1].

Proof: By induction on the structure of the context C[X]. O

Since practical reasoning rules can modify programs, we cannot take basic
properties such as that of the commutativity of nondeterministic choice for
granted, and we need to prove them. Goal variables in practical reasoning rules
allow an agent to modify its goals in almost any way. As a simple example of
the range of possibilities, consider the rule X; Y < Y; X. This rule swaps the
order of two subgoals in a sequential goal and is called the swap rule. Although
this rule may not be very useful, a special instantiation of the swap rule can
be used to simulate parallelism as we will show below. The rule illustrates
the type of modification that can be accomplished with practical reasoning
rules. The effects of practical reasoning rules upon goals cannot in general
be obtained by means of the other constructs available in the programming
language (including simple plan rules without goal variables). It is, for example,
not possible to simulate the swap rule by means of the IF... THEN...ELSE...
construct. Practical reasoning rules thus add expressive power to the agent
programming language.

One of the consequences of adding such general rules to the programming
language, is that the classical law of the associativity of sequential composition
no longer holds. That is, a goal (m; m2); w3 is not equivalent to the goal

52 CHAPTER 4. PRACTICAL REASONING RULES

m1; (m2; w3). This can be verified by applying the swap rule X; ¥ + Y; X to
both goals. In the former case, the result is m3; (m1; m2), whereas in the latter
case the result is (ma; m3); m1. The order in which the subgoals can be executed
in the first and in the latter case are different. Because the law of associativity
does not hold, we stipulate, by convention, that sequential composition ; is left
associative.!

A Least Commitment Approach

The definition of & formalises the concept of matching that is used in the
transition rule 3.6.1 for rule application. As we remarked throughout, however,
a rule may be applied to a subgoal of a goal in the goal base of an agent. This
is due to the recursive decomposition of a goal in a transition system.

The particular subgoals that may be modified by a practical reasoning rule
are the subgoals that need to be taken care of first by the agent. In particular, a
plan rule can only be applied to a goal with an achievement subgoal that must
be achieved first to achieve the main goal. The decomposition in a transition
system thus naturally supports a least commitment approach of agents. An
agent does not make a commitment to a plan in case it does not have to make
a choice at that same moment to make progress. Such an approach has the
advantage that a plan is selected at a time that it is required and the most
up-to-date information to select a plan is present. This minimises the likelihood
that a revision is needed later.

Formally, the subgoals that can be modified by applying a rule are captured
by the notion of a left subtree. Since a tree representation of a goal may be
identified with a goal, we also speak about left subgoals. The head 7, of a rule
is matched with a left subgoal of a goal in the goal base of the agent if it is
applied. The notion of a left subtree is also related to the control flow of an
imperative program. In imperative programming, always a left subprogram - a
part ‘at the front’ - of a program is executed.

Definition 4.3.5 (forest of left subtrees)
Let T be a goal tree. Then: the forest of left subtrees derived from T, denoted
by A(Ty), is defined by:

o \((E,l,E)) = {(E,l,E)}, where I denotes the label of the root node,
¢ M(Tr1535 Tra)) = r({ Ty s3> o)) U M Ty),

¢ M{(Try s+, Try)) = 7({ Ty s Trey)) U ATy) U A(Ty),

IWhereas the example in the text illustrates that due to practical reasoning rules the
associativity of sequential composition fails, if each of the two programs (m1; m2); w3 and
m1; (w2; w3) is combined (only) with the swap rule, they are still operationally equivalent
in the sense that they produce exactly the same computations. As an example in which
this is not the case due to the presence of another practical reasoning rule, consider the two
sequential goals a; (b; ¢) and (a; b); ¢, and the rule (X; Y); Z « (X; Z); Y. Now, the
former goal can only execute the sequence a, b, ¢, whereas the latter can also generate the
sequence a, C, b.

4.4. POSTING GOALS BY CONDITION-ACTION RULES 53

¢ AM(Tris [l Trad) = 7((Txrs [l Trea)) U A(Try) U ATy)-

A(T) is the set of left subtrees of a goal tree T, where the order of the
branches branching from a node labelled with + or || are disregarded. This ex-
plains why T, and T, are both considered to be left subtrees of (T, ,+, Tr,)
and (Tr,, ||, Try)- The left subgoals (trees) are the possible candidates for mod-
ification of a goal (tree) at the agent level. By means of left subtrees, it is
possible to define a notion of matching at the agent level. Let m; and 73 be
goals. Then m; is said to match with 72 at the agent level if the goal tree T,
corresponding to m; matches with a tree in the forest A\(Ty,).

As an illustration of matching, in figure 4.1, the goal b(t) + a(s) matches
with (a(s) + b(t)); (67; (P(z); a(u))), but (a(s) + b(t)); ¢? does not match
with (a(s) + b(t)); (87 (P(z); a(u)).

Procedurally, the application of a rule p to a goal 7 in the goal base of an
agent comes down to pruning a left subtree of 7 that matches with the head m
of p, and replacing this subtree with the goal tree corresponding to the body
mp of p. In case some parent nodes of the relevant subtree are choice points,
it is also necessary to remove certain other subtrees as a result of the choice
(commitment) made. For example, if a rule matches with 7y in 1 + 9, subgoal
7o is also dropped when the rule is applied.

4.4 Posting Goals by Condition-Action Rules

Condition-action rules are a special type of rules different from other practical
reasoning rules. This difference stems from the fact that these rules, unlike other
rules, are not triggered by any current goals of the agent. Instead, these rules
may be fired in case certain beliefs are present. If - based just on the beliefs of
the agent - it is advantageous to adopt a plan of action, condition-action rules
are the way to introduce such plans. Their special status among the other rules
was already indicated by a special transition rule for condition-action rules.

A condition-action rule of the form + ¢ | = is applicable at any time that
condition ¢ is believed by the agent. ¢ thus may be called the triggering condi-
tion of the rule. If a condition-action rule is applied, a new goal is introduced
into the goal base without any changes to the agent’s beliefs. Since applying
a condition-action rule does not affect the beliefs of the agent, the triggering
condition of such rules thus is not disabled after their application. This is an
important difference with other rules which replace a goal from the goal base
and (may) disable their own triggering condition in that way. Because of this
fact it is more difficult to control the application of condition-action rules.

There exists, however, a simple technique to gain more control over the
application of condition-action rules. This technique consists of prefixing a
disabling action to the body of such a rule that disables its triggering condition.
Suppose, to illustrate, that a plan 7 is to be added to the goal base in case
a condition ¢ is believed. A simple instance of the technique then consists in
placing the action del(¢) in front of the plan 7 resulting in the rule < ¢ |

54 CHAPTER 4. PRACTICAL REASONING RULES

del(¢); m. If the rule is fired, it inserts a plan into the goal base that disables
its own triggering condition.

There remains, however, a theoretical problem. Even if the body of a
condition-action rule may disable the triggering condition of that rule, it still
may be the case that the condition-action rule is never disabled. This is a re-
sult of the fact that the disabling action in the plan may never be executed at
all simply because it is never selected for execution. The operational seman-
tics allows such ‘unfair’ computations. One example of such a computation is
the computation that consists of forever repeating the transition in which the
condition-action rule is applied. In this example computation, the application
of the relevant condition-action rule is favoured over all other possible transi-
tions (for example, removing the triggering condition by the del action). This
problem of computations ‘preferring’ certain transitions over others is called the
fairness problem (cf. Manna & Pnueli (1992)). To solve this problem, we need
to exclude such unfair computations. For this purpose, we introduce a so-called
weak fairness condition (on transitions):

it is not allowed that a transition is continuously enabled from
some time on in a computation, but that same transition is never
taken during the computation.

It is not too difficult to see that if computations obey this fairness rule, compu-
tations such as the example computation in which nothing else happens than
the application of condition-action rules is excluded.

Posting Goals

As an illustration of the disabling technique, we show how an operator post(r)
to post a new goal m can be implemented in 3APL by means of condition-action
rules. First, we introduce new transition rules which make precise what the
post construct is supposed to do. Then we propose an implementation of this
operator.

Informally, the action post(r) adds the goal = to the goal base of the agent.
The action itself is an action that is part of a goal. The execution of actions
within goals was dealt with in chapter 3 at the goal level. However, the action of
posting a goal 7 at the goal level must be accounted for at the agent level since
the goal © must be added to the goal base of the agent. In this case, however,
we cannot introduce a transition rule at the agent level for dealing with the post
action as we did for condition-action rules. The point is that a post action is a
subgoal in one of the goals in the goal base and at the agent level we are not
able to directly inspect subgoals.

An elegant way to pass on the information that a goal has been posted by
executing an action at the goal level to the agent level is to use labels. A special
set of labels of the form post(r) is introduced to distinguish transitions in which
a goal 7 has been posted from other transitions. Since label information is
passed on from the goal to the agent level, the information that a goal has been
posted and also which goal has been posted then is also available at that level.

4.4. POSTING GOALS BY CONDITION-ACTION RULES 55

Definition 4.4.1 (transition rule for post at the goal level)
Let 7 be a closed goal, that is, Free(r) = &.

(post(r),o) v "%, (B, o)

The goal 7 that is posted is required to be closed upon execution of the post
operator. post(mw) may contain free variables initially, which are instantiated
with appropriate values during the execution of the agent. The requirement
that 7 must be closed derives from the requirement that all basic actions are
closed upon execution. The fact that 7 must be closed upon execution is not
a real restriction, however, since 7 may contain achievement goals which may
introduce new local variables. Moreover, the only type of communication be-
tween goals proceeds by means of the belief base and not by means of shared
variables.

At the agent level, a distinction needs to be made now between transitions
with special post labels and other labels. To this end, we need to slightly modify
the semantics of the agent level of definition 3.4.2. In case a label different from
a post label is associated with a transition at the goal level, this label is passed
on to the agent level exactly as before. However, if a post() label is associated
with a transition at the goal level, the goal 7 is added to the goal base and a
T-label is associated with the agent level. The 7-label indicates that an action
internal to the agent has been performed.2

Definition 4.4.2 (transition rules for post at the agent level)
Let V = Free(w;) and let 6 be a substitution.

(mi,o)v s (ml, 0"y, 1 # post(m)

1
{mo, -« s i1, iy i1y - - Tn },0) — {0, oo, Mot T, Wi 1, - -, T },07)
post(r)
<7Ti70')V _7; j%) <7T§70J)
{mo, -+« s i1y Ty Wiy - - T 1, O) S {moy. .o M1, T Ti1, o oo, T, W, 07)

Implementing post with Condition-Action Rules
To implement post(w) by means of other facilities in the agent language, we
need to find a plan and/or a set of rules which can be substituted for the action

2The combination with the semantics of priorities introduced in definition 4.2.1 is quite
straightforward, and the details are not spelled out here. However, now we have introduced
a new set of labels post(w), we should also discuss its place in the priority ordering. Because
the post action is viewed here as a regular action, these labels are assigned the same priority
as any other action.

56 CHAPTER 4. PRACTICAL REASONING RULES

post(w) and which has the same effects. The basic idea is to use a condition-
action rule to add the goal that is posted to the goal base. Since a goal should
only be added to the goal base if a post action has been executed, the post action
should be implemented by a plan which enables the triggering condition of the
rule. For this purpose, a special predicate create, (%) is introduced which is used
as the triggering condition of the rule where 7 are the free variables (initially)
in the goal 7(Z). It is assumed that this predicate is not used for any other
purposes by the agent.

The main job of the plan to implement the post(w(Z)) action thus is to
establish the triggering condition of the rule. To this end, we use the action
ins(create, (7)) which inserts this condition into the belief base.? To make sure
that only one post action is executed at the time, binary semaphores s, are used
to guarantee mutual exclusion with other parallel sections which implement the
same post(w) action. Binary semaphores are formally introduced and defined
in chapter 6. Informally, semaphores are constructs that can be used to ensure
that two parallel processes do not execute an action simultaneously. Finally,
the function of the test in the goal guarantees that the agent exits the critical
section only after the associated triggering condition has been removed again.
The plan that is substituted for post(w(Z)) then is the following goal:

(1) P(sy); ins(create, (%)); —create,(Z)?; V(sz)

The triggering condition of the condition-action rule to create the goal (%)
is the special predicate create, (7). The disabling technique discussed previously
is used to make sure that the rule introduces at most one copy of the posted
goal into the goal base. The triggering condition can be disabled by deleting
the predicate create, (%) by a del action prefixed to the posted goal 7(Z). The
rule for posting 7(Z) then is the following condition-action rule:

(2) « create, (%) | del(create,(%)); n(Z)

Summarising, the goal (1), which replaces the post(w) goal, inserts a predi-
cate create; in the belief base of the agent which triggers the condition of the
condition-action rule (2). After inserting the trigger create, in the belief base,
the goal (1) waits until the trigger is removed again. The condition-action rule
(2) eventually will fire because its trigger condition is true.* Upon firing, the
rule creates a goal del(create,); . Eventually, the del(create,) action will be
executed which removes the triggering condition and results in a goal base con-
taining 7. After the triggering condition is removed, the agent can exit the
critical section of the plan of rule (2) and execution continues as if a post action
has been performed.

3Because we assume that the predicate creater (%) is not used anywhere else, the insertion
of this proposition into the belief base by ins(create, (%)) cannot result in consistency conflicts
with things already believed by the agent and thus will always succeed.

4And because weak fairness is assumed and the fact that only the body of the rule (2)
removes the triggering condition.

4.5. FAILURE, RECOVERY AND MONITORING IN 3APL 57

4.5 Failure, Recovery and Monitoring in 3APL

A facility for dealing with failure and the recovery from failure is provided for by
failure rules in 3APL. A facility for dealing with failure thus is an integral part
of the agent language and allows for various ways of dealing with failure that can
be programmed. In most agent frameworks, it is not so easy to integrate these
abilities in a clean and flexible way. In most cases, these facilities are statically
built into the control structure of agents (for example, an agent always tries an
alternative plan to achieve a goal when a previously adopted plan fails, as is
the case in dMars (d’Inverno et al. 1998), whereas in AGENTO an agent always
removes actions from its commitment base if it is not able to perform them
given its beliefs in the current situation (Shoham 1993)).

In this section, we investigate failure rules and techniques for using them.
Although in section 4.1 a general outline of some strategies for dealing with
failure was presented, this outline only discussed the uses of failure rules. It
did not yet provide concrete techniques for programming with failure rules. A
technique called postfiz-labelling is introduced to gain more control over the
application of failure rules. Then we show that by using this technique we are
able to implement two types of monitoring facilities by means of failure rules.
The first facility is a so-called disruptor mechanism and the second facility is
an interrupt mechanism. The implementation of these mechanisms shows that
failure rules in 3APL provide a natural and flexible mechanism for implementing
failure facilities.

4.5.1 Postfix-Labelling

Practical reasoning rules allow the modification of goals of agents in almost
arbitrary ways. This power to modify goals in arbitrary ways partly stems
from the use of goal variables that range over arbitrary goals. As before, with
condition-action rules, however, it is not always easy to control the application of
practical reasoning rules with arbitrary (non-empty) head. A striking example
is again provided by the swap rule X; Y <« Y; X. This rule applies to any
sequential goal and reverses the order of its subgoals. There are few, if any at
all, situations in which such a rule would be useful. The problem with rules like
the swap rule is that they are not focused. It is therefore difficult to control the
application of such rules.

A technique called postfiz-labelling is introduced to gain more control over
the application of practical reasoning rules with goal variables in the head of
the rule. The idea is to mark any goal that might be modified by a rule with
goal variables with a unique label. By labelling the relevant goal variables in
a similar way, these variables then are only applicable to these labelled goals.
Of course, we do not want this labelling to affect computation steps in which
no rule (or other rules) is (are) applied. For this reason, the label should be
associated with the goal in a particular way to avoid such interference. It
turns out that postfiring the label to the goal that is to be labelled solves the
problem. That is, if a (sub)goal 7 is to be labelled with a label [, then the label

58 CHAPTER 4. PRACTICAL REASONING RULES

I is sequentially composed with the original (sub)goal = and we obtain the new
labelled (sub)goal 7; I. Similarly, goal variables X that should match with the
(sub)goal are labelled with ! and we need to replace X with X; I.

A set of labels L thus is introduced into the agent language as a way to control
the application of practical reasoning rules with variables. These labels are part
of the agent language itself and should not be confused with labels associated
with transitions or with labels associated with the nodes of a goal tree. Since
these labels are part of the language we need to define their semantics. Of
course, labels should not have any effect on the beliefs of the agent and also
should not result in deadlock. In fact, the ‘execution’ of labels is defined as that
of skip actions. When they are encountered during the computation, they are
simply removed and execution continues as if no label was present. A transition
rule at the goal level for labels formalises this semantics. A 7-label is associated
with a transition for a label since it is considered an internal step.

Definition 4.5.1 (labels)
Let I € L be a label.

(l,0) D54 (B, o)

To illustrate the technique of postfix-labelling, consider figure 4.2. Suppose
the subgoal 72 in the goal (m1; m2); 73 needs to be singled out as a goal that
should match with a goal variable in a practical reasoning rule. In that case, we
say that the goal 7y is monitored by the rule. The postfix-labelling technique is
used to guarantee that the goal variable matches with the goal to be monitored.
A label [is introduced that is not used anywhere else within the agent and
mo is replaced with ma; [. This replacement is illustrated in figure 4.2. The
subtree corresponding to the subgoal 72 is removed and the goal tree for my; [
is substituted in its place. Somewhat more formally, let C[X] = (m1; X); 73 be
the context such that C[ns] = (71; m2); m3. Postfix-labelling 75 with [in the
latter goal then means that mo; [is inserted in the context C[X] instead of o
resulting in the goal (71; (wo; 1)); m3-

Similarly, every occurrence of the goal variable X in the rule is replaced
with its labelled variant X; [. As a simple example, consider the rule X; [+ ¢
that drops a goal labelled with [in case ¢ holds and the goal (m1; (m2; 1)); 73.
Clearly, this rule is only applicable after 7; has been done and (ms; 1); w3 is
the current goal. During the execution of 75, however, the head of the rule still
matches with the subgoal. So, if 7o has been transformed to 75, then the rule
may be applied to the new goal (7}; [); 73 in case the guard ¢ holds and 7} may
be dropped. The goal 72 thus is continually monitored during its execution.

The labelling technique allows us to control the application of practical rea-
soning rules with far more precision. The technique, however, does not al-
ways work in case labelled and unlabelled goal variables are mixed and used
simultaneously. To see what might go wrong, again consider the swap rule
X; Y « Y; X. The labelling technique is based on the assumption that a
label [is postfized to a goal m resulting in 7; [. However, the swap rule may

4.5. FAILURE, RECOVERY AND MONITORING IN 3APL 59

3

1

Figure 4.2: Postfix-labelling

swap the order of the label and the goal and prefiz the label to the goal. Other
types of rules with unlabelled goal variables might simply drop labels or mix up
things in yet other ways.

To prevent such interactions between labelled and unlabelled goal variables,
we therefore will assume that labelled goals and goal variables are taken as a
single construct. That is, a label in a statement X; ! or m; ! from now on
should be considered as a single and new syntactic category. To emphasise this,
we introduce some notation for labelling goals and goal variables. A labelled goal
variable X; |is from now on written as Xj; a labelled goal 7; 1 is written as [r];.
This notation is introduced as a uniform notation for labelling; the semantics
of labels as specified by definition 4.5.1 can be copied and used to define the
semantics of both labelled goal variables X; as well as labelled goals [r];. The
notation suggests that labelling is similar to a kind of typing mechanism.

4.5.2 Disruptors

To illustrate the use of labelled goal variables and failure rules, we show how
to implement two facilities for monitoring goals: a disruptor and an interrupt.
A disruptor disrupt(¢, mp,,) is a facility that monitors a particular goal .
T is called the monitored goal and is executed by the agent in normal circum-
stances. However, when the associated monitoring condition ¢ holds, execution
continues with the so-called recovery goal 7. In that case, the monitored goal
T is replaced with the recovery goal 7. In case of failure, a disruptor typically
is used to implement the strategy of re-planning from scratch. The informal dis-
cussion of the operation of the disrupt construct is made formal by the following
transition rules at the goal level. disrupt(¢, E, 7,) is identified with E. Because
a disruptor is here primarily taken as a facility for dealing with failure, the f
label (for failure rules) is associated with a computation step of a disruptor (the
second transition rule below). In case the monitored goal is executed, the label
is the same as that of the computation step of that goal.

Definition 4.5.2 (disruptor mechanism)

(Tmy) =3¢ (l,0") and Vv : o [¢y

(distupt(¢, Tm, 1), 0) —g (disrupt(, 7., 7, ")

60 CHAPTER 4. PRACTICAL REASONING RULES

o = ¢8, dom () = Free(y)

(disrupt(¢, T, 7p), 0) —3g (1, 0)

The transition rules cover all cases. That is, either the monitoring condition
¢ is believed by the agent and we have o |= ¢ or it is not believed and we
have o }£ ¢. A disruptor thus never deadlocks like an IF... THEN...ELSE.. ..
The monitoring condition determines when the disrupt should be executed and
the recovery goal should replace the monitored goal. In case the monitoring
condition does not hold, the monitored goal 7,, is executed just as it would have
been without the presence of the disruptor. The first transition rule formalises
this case. A disruptor remains present during the normal execution of the
monitored goal and is removed only when the monitored plan has been finished
or the recovery goal is substituted for it. This means that all goals resulting from
executing one or more steps of the original goal 7, thus are also monitored. In
case the agent believes that ¢, the second transition rule formalises that m,, is
replaced with the recovery goal m, and execution continues with the recovery
goal 7, as the main goal. The monitoring condition thus specifies in what
circumstances the plan 7, should take over.

Implementation of disruptors

The technique of postfix-labelling will now be used to implement disruptors by
means of practical reasoning rules. A practical reasoning rule that implements a
disruptor is called a disruptor rule. The implementation of a disruptor proceeds
by a straightforward application of the labelling technique. To guarantee that
the monitored goal only is affected by the disruptor rule that implements the
disruptor, labels are introduced to uniquely identify the monitored goal. To
implement a disruptor disrupt(¢, 7, 7,) in a context C[X], then, we need to do
two things: (i) label the monitored goal 7, by a unique label | and substitute
the labelled goal [mp,]; in the context C[X], and (ii) create a disruptor rule
X, <« ¢ | m, where ¢ is the monitoring condition of the disruptor and =,
is the associated recovery goal. A disruptor rule is applicable just in case the
associated disruptor replaces the goal 7, by 7, i.e. ¢ holds.

Postfix-labelling guarantees that a disruptor rule is applicable to the mon-
itored goal if and only if the monitoring condition holds. It does not imply,
however, that the rule is applied in case the monitoring condition holds, nor
that the monitored goal is no longer executed. To guarantee similar behaviour
of the disruptor rule and the disruptor, a preference for applying disruptor rules
over action execution must be imposed. For this purpose, we can use the clas-
sification of practical reasoning rules and the associated priorities. The formal
semantics was defined by the new agent level transition rule 4.2.1. By classifying
disruptor rules as failure rules, they are preferred over action execution. Con-
sequently, disruptor rules implement disruptors in the semantics with priorities
of definition 4.2.1. Notice that in this case we did not need the full structure
of the classification into four classes. A simpler scheme of priorities would have
been sufficient here.

4.5. FAILURE, RECOVERY AND MONITORING IN 3APL 61

4.5.3 Interrupts

Another facility for monitoring goals are interrupts interrupt(¢, mpm,, ;). As be-
fore, the goal to be monitored is 7, and ¢ is the monitoring condition. Instead
of replacing the monitored goal with another goal, however, an interrupt mech-
anism interrupts the goal 7, and first executes the interrupt goal w;. This type
of monitoring facility can be used, for example, for monitoring preconditions
of an adopted plan. In case a precondition of such a plan fails to hold, an in-
terrupt goal can be invoked to attempt to re-establish the preconditions of the
plan. The formal operation of interrupts is defined by the following transition
rules. Again, interrupt(¢, E, ;) is identified with E. The labelling of transitions
is identical to that of disruptors.

Definition 4.5.3 (interrupt mechanism)

(Tm, o) —lm (ml,,0") and Vv : o [E ¢y

(interrupt(@, T, 7)), 0) LI (interrupt(¢, 7!, m;),0')

o = ¢, dom(8) = Free(y)

(interrupt(@, T, m;), o) im (m;0; interrupt(@, mpm, m;), o)

Implementation of Interrupts

The implementation of interrupts by practical reasoning rules is almost com-
pletely analogous to that of disruptors. The goal that is to be monitored is
labelled and a practical reasoning rule that is called an interrupt rule is intro-
duced. An interrupt rule is of the same form as a disruptor rule except for
the body. Where the body of a disruptor rule simply consists of the recovery
goal that replaces the monitored goal, the body of an interrupt rule inserts the
interrupt goal into the goal base but does not drop the monitored goal. The
body of an interrupt rule then becomes m;; ([my,];) which guarantees execution
of the interrupt goal first and then continues with the same interrupt as be-
fore. Thus, to implement an interrupt interrupt(¢,mp,,7;) in a context C[X],
two things have to be done: (i) label the monitored goal 7, by a unique label
I and substitute the labelled goal [ry,]; in the context C[X], and (ii) create an
interrupt rule X; < ¢ | m; X;. As in the case of disruptors, interrupt rules
are classified as failure rules.

Two types of monitoring mechanisms have been implemented by means of
practical reasoning rules. In both cases, a label was introduced to monitor a
single goal. The use of labels, however, is not restricted to the application of a
single goal. It is also possible, for example, to use a single label to monitor two
parallel goals labelled with the same label simultaneously. Still other applica-
tions are conceivable, where a single label is used to label more than one goal
variable. An example of the latter is provided in the next section.

62 CHAPTER 4. PRACTICAL REASONING RULES

4.6 The Swap Rule and
the Simulation of Parallelism

To illustrate the expressive power of practical reasoning rules, we discuss one
more example. The aim is to show that practical reasoning rules can be used
to simulate parallelism. To this end, we must show that for arbitrary agents we
can always find another agent that behaves similarly and which does not have
multiple goals nor uses parallel operators in its plans.

To achieve our goal, we must first gain a better understanding of the seman-
tics of parallelism. First of all, the parallelism that we are interested in here is
the implicit parallelism of multiple goals in the goal base of an agent and not
the parallelism of parallel goals 7 ||m2. This type of parallelism is modelled by
an interleaving semantics in the operational semantics. It is thus important to
understand this model. Interleaving semantics imposes a particular schedule on
top of the execution of multiple goals. It allows one goal at a time to perform
a computation step. This type of semantics thus suggests that a scheduler each
‘tick of the clock’ selects a goal that may execute and perform a computation
step of that goal. The scheduler thus determines the order in which the goals are
executed and generates a particular sequence of actions that is performed. The
selection of a goal in an interleaving semantics, however, should be arbitrary.
That is, the scheduler may not prefer the execution of any specific goal over
that of others.

The key to simulating parallelism thus is to generate all the possible execu-
tion sequences of actions of parallel goals. One such a sequence is, of course,
the sequential composition of all the parallel goals. This is only one possible
sequence, however, and does not allow for alternative action sequences in which
actions of goals later in the sequential composition are executed before those of
goals earlier in the sequence. But, by now, we know that the order of individual
goals in a sequence of goals can be changed by practical reasoning rules. As an
example, we have cited the swap rule more than once. The idea is to simulate
the parallel execution of n goals by putting these goals in a sequence and by
using the swap rule to change the order of the goals in the sequence. By arbi-
trarily swapping the order of the goals in the sequence it is possible to execute
actions from any goal. The resulting sequences of actions then is the same as
that of an interleaving semantics.

To implement the idea for simulating parallelism, we use the postfix-labelling
technique to identify the parallel goals and we use ‘labelled’ versions of the
general swap rule. Let my,...,7m, be a set of goals of an agent. These goals
are executed in parallel. The idea is to put these goals in a sequence, and
to use a label to identify the goals that are executed in parallel. For this
purpose, we use a single :exit label to indicate the end of a goal m;. The n
original goals then are labelled and sequentially composed into the new goal
((- ([F1)wemit; [m2)ewit); ---); [Tnlewit). Since there is no communication be-
tween parallel goals, we assume that the sets of first order variables in the

4.7. CONCLUSION 63

different goals are disjoint.?

The next step is to introduce practical reasoning rules that change the order
of the goals in the sequence. The required rules must be able to swap goals and
put an arbitrary goal first. For this purpose, we introduce two kinds of rules.
Both rules are ‘labelled versions’ of the general swap rule X; Y « Y; X. The
first swap rule is X; (Yegit) < (Yez); X and is used to put an arbitrary goal
Yezit from the sequence in first place. The second swap rule is (Xegit); Y
Y; (Xezit) and is used to swap a goal X, at the front of the sequence with
a subsequence Y immediately following the goal. The two rules are inverses of
each other: the effects of either one of the rules can be cancelled by the other.

From our previous discussion, it will be clear what happens when this new
agent is executed. By applying the swap rules an arbitrary goal can become
first in the sequence of goals. Any goal that is first in the sequence can execute
its actions, and as a result we obtain the arbitrary interleaving of actions from
the goals.

There remain some issues that need to be settled. As before, we still need
to assign the labelled swap rules to priority classes. Since in this case, the ap-
plication of swap rules should not have priority over action execution, the swap
rules are classified as optimisation rules. In the semantic framework with prior-
ities, then, neither is preferred over the other. Furthermore, we need the weak
fairness assumption for the simulation agent to work properly. The assumption
is needed to exclude computations which continuously apply the swap rules and
do nothing else. Finally, there is a problem concerning condition-action rules.
Condition-action rules introduce new parallel goals, whereas in the simulation
agent the assumption is made that such goals occur somewhere in the sequence
of goals labelled with :exit. In this context, therefore, we must assume that
condition-action rules are absent.

4.7 Conclusion

The practical reasoning rules of 3APL agents provide a powerful mechanism for
goal and plan revision. In this chapter, we studied both the technical details
involved in applying practical reasoning rules as well as the range of application
of these rules. The former resulted in a formal definition of the matching of a
rule and a goal. The broad range of uses of these rules was illustrated in several
ways. A classification of practical reasoning rules in different rule classes was
proposed as a guide to their use. Four classes were identified: failure rules,
plan rules, condition-action rules and optimisation rules. The expressive power
of rules was illustrated by an application of two types of rules. Condition-
action rules can be used to implement a post operator for the creation of new
goals. A technique for disabling the triggering conditions of such rules was dis-
cussed. Failure rules can be used to implement different monitoring facilities.
Two such facilities were implemented: disruptors and interrupts. A technique

5The simulation of parallel goals thus is modulo the naming of first order variables. This
is a technical detail that we do not go into here any further.

64 CHAPTER 4. PRACTICAL REASONING RULES

called postfix-labelling was introduced to gain more control over the application
of rules with goal variables. The combination of practical reasoning rules and
priorities turns out to be especially worth while. Priorities that are associated
with computation steps provide yet another means to increase the control over
the application of rules. Without priorities it would not have been possible to
implement disruptors or interrupts. Finally, as yet another illustration of the ex-
pressive power of practical reasoning rules, it is possible to simulate parallelism
by means of rules.

CHAPTER 5

Communicating Agents

In previous chapters, an intelligent agent has been defined as a computational
entity consisting of beliefs and goals which make up its mental state. A se-
mantics for multi-agent systems was also introduced. So far, however, we have
only discussed intra-agent communication - that is, communication at the goal
and agent level. Communication between agents - at the multi-agent level - has
not yet been introduced. In this chapter, we extend the agent language 3APL
with communication at the multi-agent level. Communication at the multi-
agent level consists of communication between agents of their beliefs and goals.
Two pairs of communication primitives are introduced for inter-agent commu-
nication. The semantics of these primitives is based on two distinct types of
reasoning: deduction and abduction. The focus in the semantics is on the agent
that is receiving a message, also called the hearer. Deduction allows the hearer
to derive information from a received message. Abduction allows the hearer to
obtain appropriate proposals in reply to requests. Our concern with the hearer
differs from the standard speech act approaches in the literature.

5.1 Communication at the Multi-Agent Level

At the multi-agent level, a new concern of how to manage the interaction of
the agents in a multi-agent system arises. One of the ways to structure the
interaction of a set of agents is to use an agent communication language (another
possibility would be to equip agents with sensory abilities). Communication
allows agents to form teams to cooperate, or to negotiate to resolve conflicts.
Communication involves two (or more) agents which interact by exchanging
messages. Our focus will be mainly on the agent that receives a message. It is
the agent which receives a message that has to process this message, and in the
semantics for the communication language we want to capture this aspect of
communication. Qur approach thus contrasts with other approaches based on
speech act theory, since traditionally speech act theory (Searle 1969) has been

65

66 CHAPTER 5. COMMUNICATING AGENTS

more speaker-oriented.

The fact that our main concern is with the hearer does not exclude the possi-
bility to deal with other aspects of communication. Constraints on the speaker,
for example, can be programmed in the agent programming language. Since
such aspects can be programmed by using other facilities of the agent language,
we do not need to incorporate them in the semantics of the communication
primitives.

In this chapter, we discuss two types of message exchange. First, we discuss
the exchange of a message which is interpreted as providing an answer to a
question. Secondly, we discuss the exchange of a message which is interpreted
as making a request. For both types of messages we propose a semantics which
we believe captures the ‘successful’ processing of these messages by the receiver.
In the following sections, we will explain what we mean by the successful pro-
cessing of a message. Although we do provide a specific semantics in the formal
definitions below for both types of communication, we want to emphasise that
these definitions are particular instances of a more general idea: to base a se-
mantics for the exchange of information on deductive reasoning and to base a
semantics for the exchange of a request on abductive reasoning. The specific
definitions below are illustrations of these ideas. To highlight the fact that a
semantics based on deduction and abduction specifies a range of alternatives,
we discuss some of the more interesting alternatives to the formal definitions of
the semantics.

The exchange of messages between two agents involves the sending of a
piece of information by one of the agents and the receiving of that information
by the other agent. The language that is used to communicate messages is
the knowledge representation language of the agent system. In the context of
communication, this language is also called the content language and we assume
that this language is a language shared by all agents in a multi-agent system.
Corresponding to the two types of message exchange, we introduce two pairs
of communication primitives. The first set of communication primitives, tell
and ask, may be used for the exchange of information. A communicative action
tell(b, p) is used by the sender to communicate the message ¢ to a receiving
agent b. A communicative action ask(a,) is used by the receiver and specifies
what type of information a corresponding message from a should provide in
order to answer the question 1. The second set of communication primitives,
req and offer, may be used for the exchange of a request. A communicative
action req(b,) is used by the sender to communicate a request ¢ to a receiving
agent b. A communicative action offer(a,)) is used by the receiver and specifies
a proposal 9 that the agent is prepared to make to satisfy a request of agent a.

5.2 A Formal Semantics for Communication
As before, a formal operational semantics for communication is defined by a

number of transition rules. The formal semantics for the communication prim-
itives that will be defined in the sequel is similar in a number of respects to

5.3. INFORMATION EXCHANGE 67

that of CSP (Hoare 1985) and CCS (Milner 1989). The main difference is that
our primitives concern the communication of messages from a logical language,
instead of values that are associated with variables. A similar technique is used
to specify the semantics, however. First, labelled transition rules are introduced
for the individual communicative actions, like tell and ask, for example. The
labels associated with these transitions are used to indicate that an attempt to
communicate was made. Actual communication then takes place if labels of a
sending agent and a receiving agent match.

This type of semantics specifies synchronous communication primitives. Syn-
chronous communication of messages involves the participation of both agents
at the same time and implies that the agents have to synchronise their com-
municative actions. The synchronisation of communicative actions gives rise to
a simultaneous communicative act of two agents which is also called a hand-
shake. A handshake is an atomic act, in the sense that it cannot be interrupted
by other actions. Although synchronous communication primitives may seem
to have a number of disadvantages compared with asynchronous communica-
tion primitives, computationally synchronous communication is as expressive
as asynchronous communication. Asynchronous communication between two
agents can be simulated by synchronous communication and a third ‘interface
agent’ which behaves like a buffer. The idea is that an interface agent is always
ready to receive messages from other agents (and therefore no delay in waiting
for synchronisation occurs) and that an interface agent sends a message that
it received for another agent whenever that agent is ready to receive the mes-
sage. Moreover, we believe that for some purposes it is quite natural to have
synchronous communication at the multi-agent level. The implementation of a
multi-stage negotiation protocol in the next chapter provides an illustration of
the use of synchronisation.

The use of synchronous communication between agents implies that a ques-
tion and an answer, or a request and an offer, are exchanged ‘simultaneously’ by
the agents involved in the communication. We call the agent that tells something
to or requests something from another agent the sender, and the other agent
that replies with an answer or an offer is called the receiver. In the sequel, we
will see that this is a natural convention corresponding with the computational
burden on the receiver to ‘decode’ the message that is received.

5.3 Information Exchange

We first introduce two communication primitives tell(b,¢) and ask(a,®) for
the exchange of information. As mentioned previously, in the semantics we
want to capture the successful processing of a message by the receiver. In the
case of information exchange, from the point of view of the receiving agent,
we think it is most important that that agent is able to derive an answer to a
question from the message it received. Therefore, the successful processing of the
message is identified with the process of deriving an answer from that message.
Because messages and questions are formulas from the same logical language,

68 CHAPTER 5. COMMUNICATING AGENTS

it is most natural to process a received message by deriving an answer using
logical deduction. The formal semantics for information exchange therefore is
based on deduction.

We want to emphasise that our semantics is not intended to capture the
much more complicated semantics of a speech act like, for example, informing.
Whereas speech act theory is mainly concerned with constraints on the mental
state of the speaker, we are interested in the way the hearer processes the
received message.

Informing Another Agent

The communicative action tell(b, ¢) is an action to send the message ¢ to
agent b. There are no constraints on the sending agent imposed by the seman-
tics; the only constraint is that agent b, to whom the message is sent, ‘accepts’
the message. The informal interpretation we associate with the action tell(b,)
is that ¢ conveys some information.

The message ¢ is required to be a sentence when tell(b, @) is executed, since
it does not make sense to send indefinite information to another agent when an
attempt is made to inform that agent. So, any free variables which occur in a
tell(b, ¢) action in a plan of an agent must have been instantiated by retrieving
bindings for these variables and parameter passing before the formula ¢ can be
communicated. The empty substitution @ is associated with the transition of
tell since the sender receives no information. The transition below is labelled
with bl;¢ to indicate that an attempt of sending information ¢ to agent b is
being made. The exclamation mark ! indicates that a message is being sent,
while the subscript i indicates the type of communication, namely information
exchange.

Definition 5.3.1 (transition rule for tell)

@ is closed

(tell(b,), 0) v 28, (E,0)

As explained in the previous section, the transition rule for tell and the
transition rule for ask below specify virtual or attempted computation steps and
do not specify completed computation steps. Actual communication between
agents only occurs when the labels associated with the virtual steps match and
the message sent is accepted by the receiving agent; in that case, a handshake
occurs. The precise conditions for actual communication are specified in the
third transition rule for the exchange of information below.

Asking for Information

The communicative action ask(a,) is an action which specifies a condition
for the acceptance of messages sent by a. The condition is that the message sent
must entail (an instance of) 1. The informal interpretation we associate with
this action is that 1 is a question for which agent a should provide an answer.

5.3. INFORMATION EXCHANGE 69

The question 1 does not have to be a sentence, but may contain free vari-
ables. The free variables in ¢ indicate what the question is about (cf. also
Groenendijk & Stokhof (1984)). The receiving agent has to process a received
message to compute an answer from that message. The process involved, as
we suggested, is that of deduction. The receiving agent attempts to deduce an
answer 6 from a message ¢ of the sender a and its own beliefs 0. Recall that
an answer to a question is a substitution é such that o U ¢ =46 (cf. definition
3.3). Moreover, we require that 6 is a complete answer, that is, grounds ¥. The
receiving agent accepts a message ¢ only if it is able to compute a complete
answer to its question from .

In the transition rule for ask, the question mark ? in the label indicates that
the asking agent is the receiving agent. The subscript 7 in the label indicates that
the communication concerns information exchange. The substitution § denotes
a possible answer. The fact that there are no restrictions imposed on answers
by the transition rule indicates that from the perspective of the receiving agent
any answer is acceptable.

Definition 5.3.2 (transition rule for ask)
Let 8 be a ground substitution such that dom(6) = Free(¢).

18 is closed
(ask(a, 9),0)v "5y (B, 0)

It is up to the receiving agent to compute an answer and - in case there
exists more than one possible answer - to select an answer it is interested in.
The computational burden thus is on the receiving agent which has to deduce
the requested information by using the received information. The answer is
computed by deducing which 8 satisfy o U ¢ = 9.

Remark 5.3.3 It is possible to relax the requirement that 8 grounds the ques-
tion ¢ and specifies a complete answer. In that case, partial answers might be
provided by the sending agent. From a programming perspective, however, we
believe that partial answers only complicate the programming task and such a
feature can be simulated by existentially quantifying variables in a question.

The Communication of Information

Actual communication concerning the exchange of information between two
agents occurs when both agents address each other and the sending agent pro-
vides the information from which the receiving agent is able to deduce an answer
to its question. The transition rule for actual communication is defined next.
The computed answer to the question of agent b is implicit in the transition
associated with agent b (cf. the transition rule for ask).

Notation 5.3.4 If M is a set of agents and A is an agent, the notation M, A
is used to denote the union of M U {A}.

70 CHAPTER 5. COMMUNICATING AGENTS

Definition 5.3.5 (ezchange of information)
Let A ={a,11,,0,,T,) and B = (b, I, 04,T',) be two agents such that a # b,
and let M be a (possibly empty) multi-agent system such that A ¢ M, B ¢ M.

A8 4 BEYY B and oy Up = o
M,A,B —s M, A", B'

Example 5.3.6 In this example, we illustrate the semantics of definition 5.3.5.
Consider two agents John and Roger which are going to a meeting to discuss a
paper. A question concerning this meeting might be where the meeting takes
place. Assume that Roger seeks to find an answer to this question and John is
able and prepared to provide the information. The appropriate communicative
action for Roger then would be the following:

ask(john, meet(paper, 10 : 00Fri, 1 : 00, Location, {john, roger, mark}))

The free variable Location indicates that the question is about the location of the
meeting. To provide an answer to Roger’s question, John might send different
messages depending on the beliefs of Roger. For example, John could simply
tell Roger the place by:

tell(roger, meet(paper, 10 : 00Fri, 1 : 00, amsterdam, {john, roger, mark}))

It is easy to see that Roger can deduce an answer from John’s message. An
alternative to sending this message would be to send a message from which
Roger, given his current beliefs, could derive the location of the meeting. For
example, assume that Roger takes the location of John at 10:00 on Friday to be
definite information as to where the meeting takes place. Roger’s beliefs would
then imply the proposition

location(john,10 : 00Fri, Loc) —
meet(paper, 10 : 00Fri, 1 : 00, Loc, {john, roger, mark})

and John could send Roger a message concerning his location 10:00 on Friday
from which Roger, given his beliefs, would be able to derive an answer to his
question:

tell(roger, location(john, 10 : 00 Fri, amsterdam))

Alternative Views on the Exchange of Information

The idea to use deduction to formalise the exchange of information is cap-
tured in a simple and elegant way in definition 5.3.5. The particular implemen-
tation of this idea, however, is only one out of a range of alternative definitions.
A number of interesting variations on a ‘deductive’ semantics are possible. As
our main interest here concerns the receiver, we comment on one interesting
alternative from the point of view of the receiving agent. In the transition rule
for the exchange of information 5.3.5, the message ¢ is taken as additional infor-
mation that - for the purpose of computing an answer - is added to the beliefs

5.3. INFORMATION EXCHANGE 71

of the receiving agent. This type of belief change is also called ezpansion in the
belief revision literature (Gardenfors 1988). One consequence of this semantics
is that if the message ¢ sent by agent a is inconsistent with the beliefs of agent
b, any answer whatsoever is considered acceptable. Although we believe there
is nothing wrong with this particular semantics, this observation suggests an
interesting alternative semantics. The suggestion is to update - by using an
update operator o - instead of expand the beliefs of agent b with the message
 such that oy o ¢ remains consistent. The informal interpretation of this type
of information exchange should then be changed into: if agent b would believe
® to be true (after updating), the question 1 can be answered. There are still
a number of other interesting alternatives to definition 5.3.5 for dealing with
inconsistency. For example, a message inconsistent with the receiving agent’s
beliefs could simply be considered unacceptable.

Example 5.3.7 We now give an example which is more naturally handled by
the alternative semantics in which the beliefs of the receiving agent are updated
by the message that is received. Consider the situation in which Roger wants to
know how long it would take Mark at 10:00 on Tuesday to get to Amsterdam,
and currently believes (among other things) that Mark is in Utrecht. This is
represented by location(mark, 10 : 00 Tue, utrecht):

location(mark, 10 : 00 Tue, utrecht) A

VP, T, L1, L2((location(P, T, L1)A
location(P, T, L2)) — L1 = L2)A

transport(train, utrecht, amsterdam, 0 : 45)A

transport(train, rotterdam, amsterdam, 1 : 00)A

utrecht # rotterdam

But now suppose that Roger is not sure that Mark actually is in Utrecht and
therefore asks Mark to provide the information:

ask(mark, location(mark, 10 : 00 Tue, FromLoc)A
transport(train, FromLoc, amsterdam, Trans Time))

Because Roger knows about transportation times, Mark just needs to inform
Roger of his whereabouts from which Roger then would be able to deduce the
time needed by Mark to travel to Amsterdam. However, if Mark would tell
Roger:

tell(roger, location(mark, 10 : 00 Tue, rotterdam))

the semantics of definition 5.3.5 would render the belief base resulting from
adding this information to Roger’s beliefs inconsistent. The alternative seman-
tics, where Roger’s beliefs are updated with the message, however, would be able
to deal with this type of situation and could provide a correct answer to Roger’s
question (depending on the semantics of the update operator o, of course).

72 CHAPTER 5. COMMUNICATING AGENTS

Constraints on Mental States

Although our focus has been mainly on the receiving agent so far, there is
no reason to suppose that we cannot impose constraints on the mental state of
the sending agent. It is possible to program particular conditions on the mental
state of the sender. For example, we can define a new communication primitive
inform by using the primitive tell that tests whether or not the sending agent
believes what it tells:

inform(a, ¢) 4 ©?; tell(a,)

The inform primitive thus requires the sender to be honest. Because we can pro-
gram such conditions, we did not incorporate these conditions in the semantics
of tell. Another reason why we did not include such conditions is that by not
doing so we have been able to keep the semantics of our primitives basic and
simple. This makes it easier to understand the meaning of the primitives and
to use them to program agents. A somewhat more philosophical argument is
that from the perspective of speech act theory one could argue that sincerity
conditions on the mental state of the agent should not be part of the (seman-
tic) definition of speech acts (cf. Bach & Harnish (1979)). The point is that if
agent a is lying to agent b that ¢ is the case, agent a can still be described as
informing or telling agent b that .

Although the inform action first performs a check on the belief base to see
whether or not the message ¢ is believed, there is no guarantee that the agent
still believes ¢ at the moment of sending the message. The reason is that an
agent is multi-threaded and the defined action inform is not atomic. As a conse-
quence, some other goal of the agent may have interfered and caused a change
in the belief base of the agent after performing ¢? but before communication by
means of tell has taken place. However, if no other goal of the agent interrupts
the execution of the defined primitive inform by changing the belief of the agent
that ¢ is the case, then the primitive inform succeeds only if the agent believes
what it tells.

Also note that we do not require that the receiving agent adds the information
it receives to its belief base. The successful processing of a message in our view
only consists of the computation of an answer that is deduced from the message.
This does not mean that the receiving agent cannot update its mental state with
new information. Of course, the programming language offers other facilities
for updating the beliefs of the receiving agent. For example, it is not difficult
to program an agent that after performing an ask action updates its mental
state with the answer that it received. Such an agent should simply insert the
information in its belief base:

ask(a,v); ins(%)

Note that this solution only works for answers that are consistent with the
current belief base of the agent.

5.4. REQUESTS 73

Agent b

Agent a

o [DEDUCTION |

tell(b,)
SENDER

goal 1

belief base

ask(a, ¢)
RECEIVER

accept /reject

Figure 5.1: Information exchange by means of deduction

In figure 5.1, the communication of information between two agents is illus-
trated. The sending agent a, which is the agent using the communicative action
tell(b, p), communicates to agent b the proposition ¢. When this proposition
is received by agent b and that agent has a matching ask(a,) indicating that
it is willing to communicate with a, agent b uses the received information to
compute an answer to its question. The received proposition ¢ and the current
belief base of agent b are inputs for a deductive system, like for example Pro-
log, and the deductive system is given the question ¥ as a goal, which means
it should attempt to compute an answer for ¥. In case the deductive system
succeeds, it outputs an answer §. The answer is used in further computations of
agent b. In case the deductive system indicates whether it succeeded or failed,
this information is (implicitly) communicated to agent o (an accept is sent in
case of success, a reject in case of a failure).

5.4 Requests

The second pair of communication primitives we introduce may be used to ex-
change requests. Again, we are interested in capturing what could be considered
as the successful processing of a request by the receiver. The main issue for the
receiving agent, we believe, is whether or not the agent is able to compute a goal
or plan which would satisfy the request. This is the first issue an agent which
receives a request should deal with and is a prerequisite for the evaluation of a

74 CHAPTER 5. COMMUNICATING AGENTS

request. Therefore, we take the successful processing of a request to mean that
the receiving agent is able to make a proposal that would satisfy the request.

Now consider the requirements on such a proposal. First of all, we should
make clear that we consider declarative proposals and declarative requests here.
That is, requests and proposals are propositions or statements from the knowl-
edge representation language £. Given a request ¢ which specifies a state of
affairs to be achieved, for a proposal 9 to satisfy the request, this proposal
should entail that a state of affairs such that ¢ is obtained (given what the
agent which makes the proposal currently believes). Now we notice that the
problem of finding a proposal ¢ such that o U4 |= ¢, that is, a proposal ¢
which given the current beliefs o entails ¢, is analogous to an abductive prob-
lem. This suggests that an appropriate semantics which captures the successful
processing of requests by the receiver can be obtained by using an abductive
semantics.

Abduction is sometimes paraphrased as reasoning from an observation to
an explanation, or alternatively, from an effect to a cause. In a communication
setting, where more than one agent is involved, we think of the agent sending
a request as the agent which desires a particular effect to be realised, and of
the agent who receives the request as the agent which tries to compute a cause
that would establish the effect. The basic idea underlying the semantics of the
primitives is that abductive reasoning can be used by the receiving agent to
compute a proposal that would achieve the request of the sender.

Perhaps even more than in the case of the exchange of information we should
emphasise that the semantics for req and offer that we propose here is not
intended to capture the much more complicated semantics of the speech act of
requesting. We are interested in the way the receiving agent processes a request
that it has received and in providing an agent with the computational means to
do so. We suggest that an abductive semantics provides an appropriate model
for the processing of a request.

Before we proceed, we give a brief, somewhat more formal, outline of an
abductive problem. An abductive problem can be characterised as follows: Given
a background theory T, a set of hypotheses H, and an effect o, the associated
abductive problem is to find an (instance of a) hypothesis h € H such that
T U h |= ¢; moreover, T U h is required to be consistent (cf. Poole (1989); this
is the strong notion of abduction). A hypothesis h is generally considered to be
a solution to an abductive problem only if a number of additional requirements
are satisfied (cf. Mayer & Pirri (1996)). For example, a solution to an abductive
problem should be as simple as possible. More general, some hypotheses are
preferred over others. Another requirement on a solution is that it should be a
most specific instance of a hypothesis. A solution Ak is also said to cover ¢.

Making a Request
The communicative action req(b, ¢) is an action to send a message ¢ to agent
b. There are no constraints on the sending agent imposed by the semantics; the

5.4. REQUESTS 75

only constraint is that agent b, to whom the message is sent, is able to offer
a proposal which would establish . The informal interpretation we associate
with the action req(b, o) is that ¢ expresses a request.

The request ¢ is required to be definite, i.e. we do not allow the occurrence of
free variables in ¢ when req(b,) is executed. So, any free variables which occur
in a req(b,¢) in a plan of an agent must have been instantiated by retrieving
bindings for these variables and parameter passing before the request ¢ can
be communicated. The agent which makes the request is not automatically
informed of the type of proposal the receiving agent b makes. The sender does
not receive any information, which explains the empty substitution @ in the
transition rule.

The symbol !,. in the label associated with the transition below is used to dis-
tinguish between the two types of message exchange, the exchange of a request
and the exchange of information. As before the exclamation mark ! indicates
that a message is being sent, while the subscript r indicates the type of com-
munication, namely the exchange of a request. A similar remark as in the case
of the transition rules for tell and ask applies here. That is, the transition rules
for req and offer define virtual computation steps or attempts.

Definition 5.4.1 (transition rule for req)

o closed
(rea(b, 9),0)v =55 (B, 0)

Offering a Proposal

The communicative action offer(a, 1) is an action which specifies a proposal ¥
to achieve a request of agent a. Informally, the action offer(a,) could be viewed
as advertising that the agent is prepared to offer ¢ to agent a; alternatively, the
agent offers a proposal i as a way to achieve a request of agent a.

The proposal 1/ may contain free variables which indicate the range of pro-
posals the agent is prepared to make. That is, by offering ¢/ any one of the
instances of the free variables in 1) is offered. The receiving agent needs to pro-
cess a received request and compute a specific instance of its proposal ¥ which
would satisfy the request. The process involved, as we suggested, is that of
abduction. The receiving agent attempts to abduce suitable instances 6 for the
free variables in 1) such that, given the agent’s current beliefs o, the request ¢
of agent a is entailed by the proposal, i.e. ¢ U8 |= ¢; moreover, the computed
proposal 18 must be consistent with the agent’s beliefs o, i.e. o £ —1)8.

In the terminology of an abductive problem, the belief base of the receiving
agent corresponds to the background theory; the request ¢ corresponds to the
effect; and v is the hypothesis which the receiving agent uses to find a solution
to the abductive problem. There may be more than one instantiation of the free
variables in the proposal ¥ which would satisfy the request of agent a. In that
case, the receiving agent is free to choose one according to its own preferences.

76 CHAPTER 5. COMMUNICATING AGENTS

The requirement that 18 is closed in the transition rule below is explained by
the fact that we require an agent to offer a most specific proposal.

In the transition rule for offer, the question mark ? in the label indicates
that the offering agent is the receiving agent. The subscript r indicates that
the communication involves the exchange of a request. The fact that there are
no restrictions imposed on the substitution § in the transition rule indicates
that the receiving agent in principle is prepared to offer any instance of ¢ as a
proposal to achieve a request.

Definition 5.4.2 (transition rule for offer)
Let 8 be a substitution such that dom(0) = Free(v)).

10 is closed
(offer(a, 1), 0)v s (B,0)

Remark 5.4.3 By using the offer(a,)) primitive, the set of hypotheses associ-
ated with the abductive problem in the semantics of requests is a singleton {¢}.
It is, however, possible for communicating agents to use abductive problems in
their full generality. That is, it is possible to implement an action offer(a, H)
where H is a set of hypotheses, and the associated abductive problem is to find
an instance of one hypothesis from H that covers the request made by another
agent. This more general communicative action can be implemented by

offer(a, {ha, ..., hn}) £ offer(a, hy) + ... + offer(a, hy)

The Communication of a Request

Actual communication which involves the exchange of a request between
two agents occurs when both agents address each other and the receiving agent
is able to abduce a specific proposal which would satisfy the request ¢ of the
sending agent; the receiving agent, moreover, only offers a proposal which is
consistent with what it believes to be true. The latter condition prevents the
receiving agent from offering too strong proposals like L (false) which would
satisfy any request. The transition rule for the exchange of a request is defined
next. The computed substitution € to instantiate the proposal is implicit in the
transition associated with agent b (cf. the transition rule for offer).

Definition 5.4.4 (exchange of a requests)
Let A ={a,11,,0,,T,) and B = (b,II,04,T',) be two agents such that a # b,
and let M be a (possibly empty) multi-agent system such that A ¢ M, B ¢ M.

ALS A4 BYEY B oy 00Ut
M, A, B —s M, A", B

Example 5.4.5 In this example, we illustrate the semantics of definition 5.4.4.
Consider again the meeting example that involved agents John and Roger, but

5.4. REQUESTS 7

now suppose that agent John would like to meet to discuss a paper with agent
Roger 10:00Fri. Then agent John could use the communicative action req to
communicate his request to meet to agent Roger as follows:

req(roger, meet(paper, 10 : 00Fri, 1 : 00, amsterdam, {roger, john}))

Also assume that agent Roger is prepared to make the following proposal to
achieve a request of John by means of the communicative action offer:

offer(john, meet(paper, 10 : 00Fri, 1 : 00, AnyPlace, {roger, john}))

Here, the free variable AnyPlace indicates that Roger is prepared to offer a
proposal to meet John at any place 10:00 on Friday in reply to a request of
John. We want to emphasise that all agent Roger does by means of the action
offer is to try and find a proposal which would satisfy a request of John. There
are no conditions on the mental state of the speaker similar to those usually
associated with the speech act of requesting, and the actions req and offer are
not intended as the equivalents of such a speech act. The action offer provides
the receiving agent with the computational means to process a request of another
agent in the sense outlined above. In the example, agent Roger uses abduction
to compute a specific instance of his proposal that would satisfy the request of
John. As is clear in this simple case, the only instance (given that Roger does
not believe anything about meetings 10:00 on Friday) which would satisfy the
request is the proposal to meet in Amsterdam.

The example illustrates the use of variables in the proposal of the offering
agent. A variable in a proposal) means that the proposal is a proposal to
satisfy any specific request of the requesting agent concerning this parameter in
the proposal, as long as this is consistent with the beliefs of the agent. In the
example, the agent offers a proposal to meet at any requested place. It does
not mean, however, that the agent offers every instance of its proposal. That
is, it does not offer the universal closure Vi as a way to achieve a request.
And neither would the requesting agent be satisfied by such a proposal in the
meeting example (it does not even make sense to meet at all possible places at
a particular time). We assume that the requesting agent would like the other
agent to satisfy its request by making a proposal that is as concrete as possible.
This explains why the agent that is computing a proposal abduces a most specific
instance of its proposal which would satisfy the request.

The distinguishing feature of the semantics of req and offer is the consistency
constraint imposed on any proposals offered to satisfy a request. This constraint
can be used to enforce that certain preferences of the receiving agent which
computes a proposal are taken into account. The consistency constraint is also
used for this purpose in the implementation of the negotiation protocol in the
next chapter.

Example 5.4.6 Consider again the example of agent John requesting a meeting
with agent Roger. However, in this case, agent John is requesting to meet with

78 CHAPTER 5. COMMUNICATING AGENTS

agent Roger somewhere, and does not care for any particular place. Agent John
could communicate this request by means of the following action:

req(roger, 3 L(meet(paper,10 : 00Fri, 1 : 00, L, {roger, john})))

Again, assume that agent Roger is prepared to make the same proposal as
before:

offer(roger, meet(paper,10 : 00Fri, 1 : 00, AnyPlace, {roger, john}))

But in this case, we also assume that agent Roger has a preference to meet in
either Utrecht or Rotterdam, and is not prepared to meet in any other place.
This type of preference can be coded into the beliefs of the agent. This is
achieved by adding a constraint in the belief base of agent Roger as follows:

VId, T, Len, L, P(meet(Id, T, Len, L, P)
— (L = utrecht V L = rotterdam))

Given this preference, the consistency constraint in the semantics makes sure
that agent Roger only abduces proposals for meeting in Utrecht or Rotterdam
because any instance of his proposal

meet(paper, 10 : 00Fri, 1 : 00, AnyPlace, {roger, john})

must be consistent with his beliefs. A disadvantage, however, of this way of
representing preferences is that if agent John would have requested to meet in
Amsterdam, agent Roger would not have been able to compute a proposal which
would satisfy this request.

Alternative Views on the Exchange of Requests

The semantics for the exchange of a request in definition 5.4.4 is a simple
instance of an abductive semantics for this type of communication. Again,
there are a number of interesting variations on such a semantics. A particularly
interesting alternative which already is suggested by the use of abduction is
to extend the semantics with a preference relation on the proposals an agent
is prepared to make. In this context, however, the preference relation would
not primarily be based on properties of simplicity of the proposal as is usual
in the literature on abduction, but would be based on concepts associated with
the interests of agents, like efficiency, for example. One reason why we did not
incorporate this extension in the semantics is that we want to study the basic
ideas in their most simple form first. Also, as illustrated in example 5.4.6, the
consistency constraint in definition 5.4.4 can be used to deal with preferences of
an agent. There are various other ways of modifying the semantics of definition
5.4.4. For example, in the case of exchanging requests we could also argue
that a proposal should not simply be added to the current beliefs as is done in
definition 5.4.4, but should be used to update the current beliefs and to check
that if the agent would believe that its proposal were true, the agent also would
believe that the request is satisfied.

5.4. REQUESTS 79

Example 5.4.7 We give an example which illustrates the use of the alternative
semantics that incorporates a preference relation on proposals. Again, we use
the example concerning the request to meet somewhere. We assume that a
preference order can be represented as follows:

meet(Id, T, L, utrecht, Att) >
meet(Id, T, L, rotterdam, Att) >
meet(Id, T, L, amsterdam, Att)

Informally, this means that for any particular instance of the variables Id, T, L
and Att, a meeting in Utrecht is preferred over a meeting in Rotterdam, which
in turn is preferred over a meeting in Amsterdam. Now assume that the same
request is made by Roger

req(john, 3 L(meet(paper, 10 : 00Fri, 1 : 00, L, {roger, john})))
and the same proposal is offered by John:
offer(roger, meet(paper, 10 : 00Fri, 1 : 00, AnyPlace, {roger, john}))

In this case, Roger would again compute a proposal to meet in Utrecht because
this is the place he most prefers to meet. However, in case John would have
requested to meet in Amsterdam, Roger would also have been able to come up
with a proposal which would satisfy this request, even though Amsterdam is
ranked lowest in his preference order. Of course, a proposal can only be found
in case we assume that Roger has no conflicting beliefs that are inconsistent
with that proposal.

Acting on a Request

Because our main objective is to provide the receiving agent with some ap-
propriate computational means to process a request, in the formal semantics no
requirements on the mental state of the requesting agent are formulated. More-
over, the agent communicating a request to some other agent is not informed by
that agent what proposal was computed. And neither does the requesting agent
receive any information whether or not its request will be achieved by the other
agent; this depends on the particular goals and plans of the agent receiving
the request. The semantics of the exchange of a request also does not specify
that the agent which receives the request is capable of achieving the proposal
which is computed in reply to a request. This is analogous to the fact that there
is no honesty condition associated with the tell primitive. However, again the
programming language offers the facilities to actually achieve requests, and it is
up to the programmer to program a particular plan to deal with requests. For
example, agent Roger may update the agenda in its belief base accordingly af-
ter computing a proposal upon receiving a request of John. The following plan
would do. Note that the offer action computes a binding for the free variable
AnyPlace which is passed onto the ins action.

offer(john, meet(paper, 10 : 00Fri, 1 : 00, AnyPlace, {john, roger}));
ins(meet(paper,10 : 00Fri, 1 : 00, AnyPlace, {john, roger}))

80 CHAPTER 5. COMMUNICATING AGENTS

It is important to realise here that in the examples that were presented the
agents are personal assistants that maintain the agendas of their users and
support meeting scheduling. The task of such an agent is to keep the agenda of
its user up to date. The items stored in the agenda represent commitments of
the user to meetings. Therefore, an update of the belief base actually represents
a new commitment of the user to go to a meeting. Of course, it is up to the
user to act upon his commitment, and no such thing can be expected from the
software agent itself.

Agent b

observation
» ABDUCTION

req(ba (P) ’
hypothesis
SENDER belief base T ()
offer(a, 1)
RECEIVER

accept/reject

Figure 5.2: Requesting and offering by means of abduction

In figure 5.2, the requesting and offering between two agents is illustrated. The
sending agent a, which is the agent using the communicative action req(b, ¢),
communicates to agent b the proposition ¢. When this proposition is received
by agent b and that agent has a matching offer(a, 1) indicating that it is willing
to communicate with a, agent b uses the received information to compute a
most specific instance of its offer. Recall that an abductive problem consisted
of a background theory T, a hypothesis h and observation o. To compute
the instance, agent b uses an abductive system. The received proposition ¢ is
inputted as the observation into this system. The current belief base of agent
b is inputted as the background theory. And the abductive system is asked to
compute an instance of hypothesis 1. In case the abductive system succeeds, it
outputs an instance 6. The instance 4 is used in further computations of agent
b. In case the abductive system indicates whether it succeeded or failed, this
information is also communicated to agent a (accept in case of success, reject

5.5. APPROACHES BASED ON SPEECH ACT THEORY 81
in case of a failure).

Requests for Explanations It is possible to use the req and offer primitives
for asking why-questions. Such questions may be characterised as requests for
an explanation. An abductive system can be used to answer such questions and
therefore the offer primitive can be used to provide answers to why-questions.

Example 5.4.8 Consider agent Roger again, who this time is wondering why
John will go to Amsterdam next Friday. Since scheduled activities are reasons
for agents to be at certain locations, the request can be formulated by:

req(john, meet({ course, paper, workshop}, 11 : 00Fri, amsterdam, {john})

Note that we introduced a new notation for formulating requests. The ex-
pression {course, paper, workshop} is a notational device denoting the possible
explanations agent John allows or thinks are possible. Such a request is not
equivalent to a disjunctive request made up of the three disjuncts correspond-
ing to the alternatives. A disjunctive request might trivially be explained by
the disjunction itself, but the request of John is a request to explain one of the
alternatives indicated. It is equivalent, however, to the following nondetermin-
istic goal which is a request to either explain that John has a course to teach, a
paper to discuss, or a workshop.

req(john, meet(course, 11 : 00 Fri, amsterdam, {john}) +
req(john, agenda(paper, 11 : 00Fri, amsterdam, {john}) +
req(john, agenda(workshop, 11 : 00 Fri, amsterdam, {john})

Agent John might simply offer one of the three alternatives as an explanation.
For example, agent John could explain that it will go to Amsterdam because of
a course it has to teach there:

offer(roger, meet(course, 11 : 00Fri, amsterdam, {john}))

The explanation, however, still needs to be told to Roger. The receiving agent
is only induced to explain the observation of the other agent. The agent could
communicate how it explains the observation by means of tell.

Notice that the use of nondeterministic choice to implement the notational
device introduced in this example is similar to the use of nondeterministic choice
to generalise an offer to a set of hypotheses in remark 5.4.3.

5.5 Approaches Based on Speech Act Theory

The main approaches in the literature involving agent communication languages
like KQML (Labrou & Finin 1994) or FIPA-ACL (FIPA 1998) are based on
speech act theory (Searle 1969). Before we discuss these other approaches,
we therefore first provide a short summary to introduce the most important

82 CHAPTER 5. COMMUNICATING AGENTS

concepts of speech act theory. One of the basic insights of speech act theory
is that the conveying of a message not only consists in making a statement,
but in a broader sense constitutes a communicative action: making a promise,
begging, informing, etc. are all different kinds of communicative actions.

In speech act theory, communicative actions are decomposed into locution-
ary, illocutionary and perlocutionary acts. A locutionary act refers to what the
speaker says; the illocutionary act refers to what the speaker does by saying
such-and-such; and the perlocutionary act refers to how the speaker affects the
hearer by saying such-and-such. For example, a speaker may say that it is six
o’clock (locutionary act); by saying so the speaker may be requesting the hearer
to leave the shop (illocutionary act); and the effect on the hearer may be that
(s)he actually leaves the shop (perlocutionary act).

By performing an illocutionary act, a speaker expresses mental attitudes:
beliefs and desires. Accordingly, one can classify types of illocutionary acts
in terms of expressed attitudes. Many classifications of speech acts have been
proposed. The one we summarise here is based on that of Bach and Harnish
(Bach & Harnish 1979). They distinguish four main classes of speech acts: (i)
constatives, like assertives and predictives, which express belief, (ii) directives,
like requestives and questions, which express a wish concerning some prospec-
tive action by the hearer, (iii) commissives, like promises and offers, which
express an intention and belief that the speech act obligates the speaker to do
something, and (iv) acknowledgements, like apologise and greet, which express
feelings regarding the hearer.

Note that although a speech act is a means of expressing attitudes, the
speaker does not actually have to have the expressed attitudes. As Bach and
Harnish (Bach & Harnish 1979), p. 39 write:

To express an attitude in uttering something is [...] to (..) intend
that the hearer take one’s utterance as a reason to believe one has
the attitude. The speaker need not have the attitude expressed, and
the hearer need not form a corresponding attitude. The speaker’s
having the attitude expressed is the mark of sincerity. If the hearer
forms a corresponding attitude that the speaker intended him to
form, the speaker has achieved a perlocutionary effect in addition to
illocutionary uptake.

As we discussed, our communication primitives are not intended to model
speech acts. Nevertheless, in a loose sense, we can classify our primitives as
belonging to one of the classes outlined above. The tell primitive, for example,
can be classified as a kind of constative. The req and ask can be classified as
directives. And the offer can be classified as a commissive. The communication
primitives, however, should not be taken to correspond to any speech act in
particular. The tell primitive, for example, does not correspond to informing
only, or suggesting only. The communication primitives can be used for many
different purposes. The tell can be used both to assert and to predict; the offer
primitive can both be used to promise and to make an offer. So, the informal

5.5. APPROACHES BASED ON SPEECH ACT THEORY 83

meaning associated with the names of the communication primitives should not
be confused with the formal semantics based on deduction and abduction.

In our semantics for the communication primitives we did not include any
sincerity conditions on the actual mental state of the speaker. For example, it
is not required that the agent using tell actually believes what it tells. Also, no
perlocutionary effects are incorporated in the semantics of the primitives. The
way an agent deals with a particular message of another agent is not specified
in the semantics of the communication primitives (and is not part of the speech
act per se, cf. the quote from Bach & Harnish (1979) above). For example,
the agent receiving a proposition communicated by tell does not automatically
update its belief base with this proposition.

Our approach is based on the view that multi-agent level communication
should be based on a well-defined and clear semantics and at the same time
should be kept as simple as possible. Moreover, our focus has been more on the
hearer than on the speaker.

We take a somewhat different perspective as to how speech act theory could
be of use in the design and development of agents. Our view is that speech
act theory may provide a useful set of abstract descriptions of communicative
actions for agents which can be used to specify and verify the behaviour of
agents. Speech acts thus would play a role in the proof theory associated with
the agent programming language. In the associated programming logic, the
speech acts could be derived just like, for example, the mental attitude of belief
would be derived from the program text and its semantics. Instead of defining a
set of communication primitives corresponding to all kinds of subtle distinctions
related to speech acts, we propose to derive what kind of speech act has been
performed by an agent from the characteristics of the content proposition and
the mental state of the agent. Alternatively, a formal specification in the logic
may specify that an agent should perform a type of speech act. In that case it is
up to the programmer to satisfy the specification.! The arguments are similar
to, but not the same, as some of those put forward in (Cohen & Levesque 1990b)
(cf. also Colombetti (2000)). In (Cohen & Levesque 1990b) a logical approach
to modelling speech acts is discussed. In our case, we argue that a distinction
should be made between actions provided for in a programming language and
actions which are defined in a logic. Moreover, we do introduce a number of
communication primitives in contrast with the approach in (Cohen & Levesque
1990b). We think speech act theory should not be viewed as a repository of
all kinds of different communicative acts for which computational equivalents
should be provided in an agent communication language, as is done in KQML
or FIPA-ACL.

The view outlined has a number of advantages. First of all, the agent com-
munication language is kept simple. This prevents all kinds of confusions on the
part of the programmer as to what kind of communication primitive it should use

1 For a similar remark cf. Labrou & Finin (1994), where it is suggested that the propositional
content conditions should be taken care of by the programmer; and indeed, it is hard to see
how these conditions could be guaranteed in any other way in KQML-like languages. Cf. also
the discussion later in this section.

84 CHAPTER 5. COMMUNICATING AGENTS

in a particular case. Second, the idea to derive speech acts from the semantics
of the agent (communication) language seems to provide for a more principled
approach than the approach which is used to provide semantics for KQML or
FIPA-ACL. It prevents unnecessary complications in the semantics and prevents
the tendency to incorporate ‘everything’ into the semantics of speech acts. The
different concerns which arise in the context of communicating agents are not
clearly separated in the approaches mentioned, we think (although this is more
true of KQML than of FIPA-ACL).

For example, in (Labrou & Finin 1994) an attempt is made to incorporate
various aspects of illocutionary acts and conversation policies into the semantics
of speech acts. There are several disadvantages with such an approach. On the
one hand, including conversation policies in the semantics provides a burden on
the programmer, who has to deal with these policies. For example, we think
that a requirement to reply in one of several ways to a communicative action of
another agent should not be part of the semantics of a speech act. On the other
hand, there is a methodological reason. If conversation policies are integrated
into the semantics of speech acts, it is difficult to see where to draw the line. For
example, is the Contract Net Protocol a conversation policy or is it a protocol
which is not part of the semantics of speech acts? In our view, it is better to
separate these issues.

Moreover, some of the speech acts provided in KQML seem to have arisen
more from a computational concern than from a clear and formal perspective on
speech acts. For example, the performative stream-all is used to ask an agent
to provide all known answers to a question in a particular format. Another
performative ask-all is introduced which provides for yet another format of re-
sponse. A similar point can be made regarding the idea to introduce specific
communication primitives to communicate with a so-called facilitator. A facili-
tator is a special agent which is introduced to manage particular aspects of the
communication between agents, and a subset of the communication primitives
supplied in KQML is used only to deal with this facilitator. In our view, these
features should not be included in the semantics of an agent communication
language.

Finally, the specification of the semantics of the communication primitives
in KQML and FIPA in a modal logic including operators for belief, intention,
uncertainty, etc. poses a problem for integrating these communication languages
into agent frameworks, i.e. agent programming languages or architectures. The
problem is that the semantics is quite abstract and it is hard to see how to ground
the modal semantics in an arbitrary agent framework. To put it in another way,
how do we know that an agent in a particular agent framework actually does
have the required mental attitudes, etc. corresponding to the modal semantics
of the operators? It has not yet been shown how to demonstrate a link between
a formal modal logic and an operational agent framework. The problem is
sometimes referred to as the gap between theory and practice. In part III, we
will discuss a solution to this problem. Note however, that our framework does
not suffer from these problems. The communication primitives presented in this
chapter naturally fit into the agent language 3APL.

5.6. CONCLUSION 85

5.6 Conclusion

This chapter introduced communication primitives for 3APL agents. Two sets
of primitives were defined. One set particularly designed for the exchange of
information, and a second set designed for the communication of requests. The
operational semantics associated with these primitives focuses on the processing
of a received message by the hearer. The main concern of the hearer in case
of information exchange is identified with the computation of an answer to a
question. The process associated with this type of computation is the process
of logical deduction. The semantics of the communication primitives for infor-
mation exchange - tell and ask - is therefore based on deductive reasoning. The
main concern of the hearer in case of the exchange of a request is identified
with the computation of a proposal that would satisfy the request. The process
associated with this type of computation is the process of abductive reasoning.
The semantics of the communication primitives for the exchange of requests -
req and offer - is therefore based on abductive reasoning. Both the reasoning
processes of deduction and abduction are well-understood, and provide a clear
and expressive semantics for communication between agents. There are some
relations with work of Eijk et al. (1999) who introduces a similar semantics for
the exchange of information. The use of an abductive semantics is also proposed
in (Dragoni et al. to appear) for an inform primitive. The ideas behind the of
work of Dragoni et al. are similar in a number of respects to that of the model
for identifying a communicative act as a particular speech act as proposed in
(Bach & Harnish 1979).

The two sets of communication primitives are integrated into the agent pro-
gramming language 3APL. The semantics of the primitives is designed to fit in
with the other primitives of the programming language. In this respect, our
approach differs from other approaches that aim at designing a ‘universal’ com-
munication language for agents like KQML and FIPA-ACL. Approaches that
separate the communication features from other agent features, however, suffer
from the problem that it is not clear what type of semantics would be appropri-
ate for such communication languages. A second problem is that it is not clear
how to integrate these communication languages into existing agent frameworks.

We argued that one should not aim at providing a (large) set of computa-
tional equivalents of speech acts. Instead, we believe, it is important to design a
semantics for communication primitives that is both simple and intuitive. OQur
approach does not exclude the use of speech act theory, but we view speech act
theory more as a tool for the specification and verification of communication
between agents than as a framework for implementing inter-agent communi-
cation. Using speech act theory as an implementation framework is unwieldy
and requires a programmer to distinguish too many subtle differences between
communication primitives to be useful for programming agents.

86

CHAPTER 5. COMMUNICATING AGENTS

CHAPTER 6

Meeting Scheduling

One of the more interesting applications of intelligent agents concerns their use
as personal assistants for meeting scheduling. As we discussed in chapter 2, per-
sonal assistants deal with routine tasks and the associated personal preferences
of their users for carrying out these tasks. Because the scheduling of meetings
can be automated, and usually involves specific user preferences, the use of
intelligent agents for the meeting scheduling domain is particularly well-suited.

The meeting scheduling domain involves multiple agents negotiating on an
appropriate time for a meeting. To resolve any possible conflicts between these
agents, they need to communicate about the meeting times that are acceptable.
The meeting scheduling domain also allows us to discuss and illustrate the use
of the communication primitives introduced in the previous chapter. In partic-
ular, we will discuss in more detail the differences between the primitives for
information exchange and the primitives for the exchange of requests.

Although meeting scheduling is a complex problem, some solutions have
been proposed in the literature (cf. Sen & Durfee (1996)). One of the solutions
proposed, is to implement distributed meeting scheduling by using the multi-
stage negotiation protocol (Conry et al. 1988). We show how to implement the
multi-stage negotiation protocol in 3APL. First, we design a set of plans for
two-agent meeting scheduling where only two agents need to agree on a meeting
time. Then we generalise this solution to multi-agent meeting scheduling for an
arbitrary number of agents.

6.1 Constraints on Meetings

The scheduling of meetings not only involves preferences of users, but also in-
volves a number of constraints on meetings to ensure that the set of scheduled
meetings is coherent. These coherence or integrity constraints concern, for ex-
ample, the identification (by means of identifiers) and overlapping of meetings.
Because it is hard to make sense of scheduled meetings without such constraints,

87

88 CHAPTER 6. MEETING SCHEDULING

we assume that the constraints enumerated in this section are incorporated as
background knowledge on meetings in the belief bases of all agents. Of course,
each agent may have more specific constraints that are associated with meetings
- in particular constraints coding the preferences of a user - as long as they are
consistent with the four integrity constraints listed below.

The first constraint requires that each scheduled meeting is assigned a unique
meeting identifier. A meeting identifier thus uniquely corresponds with a sched-
uled meeting. The second constraint requires the sets of attendants of two
different but overlapping meetings to be empty. The set of attendants of one
meeting and that of another overlapping meeting are thus required to be dis-
joint. The third constraint imposes a minimum and a maximum length on a
meeting. The constraint excludes the extreme case where a meeting does not
take any time. The constraint on the length of meetings is a simple example
of a constraint on meetings and, of course, different constraints concerning the
length of a meeting cay be specified in different contexts. Finally, the fourth
constraint is introduced to illustrate other possible constraints or preferences on
meetings. It expresses that a meeting never should take place in the evening or
during the night. In this chapter, for simplicity and notational convenience, we
abstract from the locations of meetings.

Constraint 1: Meeting Identifiers refer to unique meetings:

(meet(Meetld, Ty, L1, Att1) A meet(Meetld, T, Ly, Att2))
= (T1 = To A Ly = Ly A Attl = Att2)

Constraint 2: The attendants of two overlapping meetings are disjoint sets of
people:

(meet(Meetld1, Ty, Ly, Att1) A meet(Meetld2, To, Ly, Att2) A
Ty < Ty < T1 + Ly A Meetldl # Meetld2)
— AttlN A2 =@

Constraint 3: A meeting takes longer than 0:00 but less than 8:00 hours:

meet(Meetld, T, L, Att) - 0:00< L < 8:00

Constraint 4: There are no meetings scheduled between 18:00 and 8:00:

meet(Meetld, T, L, Att) - (T >8:00A T + L < 18:00)

6.2 The Multi-Stage Negotiation Protocol

The multi-stage negotiation protocol is used in our implementation of a multi-
agent system for meeting scheduling. The multi-stage negotiation protocol al-
lows agents to negotiate for several rounds to reach an agreement. The basic
idea of the protocol is to designate one of the agents as the host agent. The

6.3. TWO-AGENT MEETING SCHEDULING 89

other agents involved in the negotiation are called the invitees. The host agent
initiates the negotiation and will try to arrange a meeting with the invitees.

Every stage of the negotiation protocol consists of two phases. The first
phase is the negotiation phase in which proposals and counterproposals are ex-
changed. In the negotiation phase, the host starts by proposing a meeting time
to all the invitees for the meeting. The invitees reply by either indicating accep-
tance of the meeting proposal or by counterproposing another meeting time. The
second phase is called the evaluation phase. In this phase, the host evaluates
the counterproposals and selects one of the proposals as the best proposal.

A particularly important property of negotiation protocols is whether or
not they converge. The multi-stage negotiation protocol does not guarantee
convergence without some extra assumptions. To guarantee that the negotiation
will terminate with an appropriate solution, we therefore make a number of
additional assumptions. First of all, we assume that all attendants of a meeting
including the host and the invitees always share a free slot of appropriate length
in their agenda such that the meeting can be scheduled at this slot. Secondly,
the strategy of the participants during the negotiation will be to request to
schedule the meeting at the earliest meeting time that is consistent with all
the constraints and preferences of the attendants. In case everyone complies
with this request, the host can compute an earliest possible meeting time each
round of the negotiation. Finally, we assume that all scheduled meetings can be
identified by unique identifiers and that a new label which is different from all
labels used to refer to current meetings in the multi-agent system is associated
with the meeting that is being negotiated.

6.3 Two-agent Meeting Scheduling

We first design a negotiation protocol for negotiation between two agents. In
two-agent meeting scheduling, one of the agents is the host and the other agent
is the invitee. The two-agent case is substantially simpler than the case where
more than two agents are involved. The main reason for this is that in the latter
case the host has to evaluate the proposals of more than one agent. Because
the host has to deal with more than one invitee, the synchronisation of the
negotiation rounds is also more complex.

The negotiation in the two-agent case proceeds as follows. Each round the
host requests the invitee to accept the proposed meeting time or to counterpro-
pose with the earliest possible meeting time consistent with the constraints of
the invitee. After the counterproposal has been made, the host evaluates it. In
case an agreement has been reached, the negotiation is ended and a confirma-
tion of the agreement is communicated to the invitee. In case an agreement has
not yet been reached, the host starts a new round in the negotiation. In this
new round, the host proposes to meet at a time ¢ that satisfies three conditions.
First, ¢ should be the same or a later time than the meeting time #' proposed
by the invitee in the previous round (¢’ < t). Secondly, time ¢ should be the
earliest feasible meeting time for the host that meets the first condition ¢’ < t.

90 CHAPTER 6. MEETING SCHEDULING

And thirdly, the proposed time ¢ must be consistent with the host’s constraints
and preferences.

Recall that the strategy of the participants of the negotiation is to request
the earliest possible meeting time. To formalise this request, we introduce the
predicate epmeet(Meetld, PosTime, L, Att, T'). This predicate states that time
PosTime is the earliest time after time 7T such that the meeting Meetld of
Length L and with the set of attendants Att can be scheduled. That is, if
epmeet(Meetld, PosTime, L, Att, T) holds, the meeting of length L with atten-
dants Att cannot be scheduled between T and Postime, but the meeting can
be scheduled at time PosTime. Formally, epmeet(Meetld, PosTime, L, Att, T')
is defined as follows:

epmeet(Meetld, PosTime, L, Att, T) +
meet(Meetld, PosTime, L, Att) A PosTime > TA
(VT'-T < T' < PosTime — —meet(Meetld, T', L, Att))

The host initiates and invites the other agent to meet at a time T acceptable
to the host of the meeting by means of the goal

invite(Invitee, Meetld, T, L, Att)

The plan (rule) to achieve this goal is given next. The first two steps in the
plan (the body of the rule below) which consist of the request and offer actions
constitute the negotiation phase of the plan. In this phase, the host first requests
the invitee to meet at the earliest possible time after time T that is consistent
with its constraints. The invitee in response calculates a counterproposal which
it communicates to the host. In reply, the host offers a meeting time 7" which
is the earliest possible meeting time at which the host is able to meet and which
is later or equal to the time proposed by the invitee. The latter part of the plan
is called the evaluation phase of the plan. In this phase the host evaluates the
proposal of the invitee. If the time 7' that is proposed by the host is identical
to the original time T requested by the host, an agreement has been reached. In
that case, the host confirms that an agreement has been reached. In the other
case, the host starts a new round of negotiation with a request to meet at time
T'.

invite(Invitee, Meetld, T, L, Att) <+ true |
req(Invitee, 3 T1 - epmeet(Meetld, T1, L, Att, T'));
offer(Invitee, meet(Meetld, T', L, Att));
IFT=T
THEN tell(Invitee, confirm(Meetld, T))
ELSE invite(Invitee, MeetId, T', L, Att)

The reply(Host) goal is used by the invitee to negotiate with the host. The
invitee first calculates an offer that it counterproposes in reply to the request
of the host to meet at the earliest time possible. After a counterproposal has

6.4. USING TELL AND ASK FOR MEETING SCHEDULING 91

been established, the invitee replies to the host with a request to accept its
counterproposal. In case the host confirms that an agreement has been reached,
the invitee accepts the confirmation (this is implemented by the ask branch of
the nondeterministic plan for reply).

reply(Host) « true |
begin
offer(Host, meet(Meetld, U, L, Att));
req(Host,3 U1 - epmeet(Meetld, U1, L, Att, U));
reply(Host)
end+
ask(Host, confirm(Meetld, U))

To understand the relation between the invite and the reply goals, it is
most important to understand the relation between the variables T', T’, and
U in these goals. For this purpose, one should realise which communication
statements in the goals are related. In both goals, the first two communica-
tion statements and the latter two communication statements are linked. The
variable U in the offer action in the reply goal is computed by computing the
earliest possible meeting time after T as requested by the invite goal. We
thus obtain U > T. Consecutively, the variable T" is computed likewise as the
earliest meeting time possible after U. We thus obtain 7' > U. Combining
these two relations we get T < U < T', and we see that progressively later
times are proposed by the host and the invitee, respectively.

Note that the host as well as the invitee only make offers for meeting times
which are consistent with their constraints and preferences. For example, if an
agent already has scheduled to attend another meeting at time T, the agent will
not offer this time in reply to a request since it violates constraint 2 of section
6.1. The consistency condition present in the abductive semantics of offer and
req enforces these integrity constraints automatically.

Also note that the synchronisation of the negotiation rounds is achieved by
using synchronous communication primitives. Because both req as well as offer
are blocking communication primitives, the host and the invitee can only proceed
to a next negotiation round together. Thus, each of the two communicative
actions in a negotiation round has to be finished by both the host and the
invitee before a next round can start.

6.4 Using tell and ask for Meeting Scheduling

In the previous section, a protocol for two-agent meeting scheduling was de-
signed by using the primitives req and offer. The question we address in this
section, is whether we could just as well have used the other set of communica-
tion primitives for the exchange of information to program two-agent meeting
scheduling. The question thus is whether or not the intuitive reading of the
primitives actually helps the programmer in making a choice concerning the use

92 CHAPTER 6. MEETING SCHEDULING

of either set of primitives. We also want to evaluate the use of the deductive
versus the abductive semantics.

We will argue that the use of the req and offer in the meeting scheduling
example is more natural. Of course, it is possible to write a program for meet-
ing scheduling which only uses the tell and ask primitives, but we will try to
convince the reader that these solutions are less intuitive and less elegant. Since
we cannot give a formal proof of our claim, we argue by comparison and dis-
cuss a few attempts to provide a programming solution for two-agent meeting
scheduling by just using tell and ask. These attempts will also illustrate some of
the differences between the two sets of communication primitives. After a few
attempts that do not work, we present an implementation of the multi-stage
negotiation protocol that only uses the tell and ask primitives and discuss some
of the disadvantages of this implementation.

The program for meeting scheduling of the previous section is quite a simple
and concise solution, and therefore it seems natural to look for a similar program
which uses tell and ask instead of req and offer. To find a program for meeting
scheduling which just uses tell and ask, we will therefore use the strategy of
finding particalur tell and ask actions which can serve to replace the req and
offer in the plans provided in the previous section. The idea, thus, is to look for
tell and ask actions which - if the req and offer actions used in the solution of the
previous section are replaced by the tell and ask actions respectively - results in
an implementation of the protocol that is correct.

The strategy of looking for tell actions to replace req actions, and ask actions
to replace offer actions cannot be reversed in the sense that req actions are
replaced by ask actions and replacing offer actions with tell actions. The reason
is that the host is supposed to make the first proposal in the negotiation protocol
presented and the invitee does not have the relevant information concerning
meeting times which are acceptable to the host to make a first proposal.

First Attempt:
The first and most naive attempt would be to try and implement the requests
of the agents by

tell(a, meet(Meetld, T, L, Att))
and the offers of the agents with
ask(a, epmeet(Meetld, T1, L, Att, T'))

where the agent name a is substituted appropriately by either the host name
Host or the invitee name Invitee. The main problem with this solution is that
the proposition meet(Meetld, T, L, Att) which the agents communicate may be
inconsistent with the belief base of the receiving agent! There is no consistency
check included in the semantics of the tell and ask primitives. Moreover, the
meeting time proposed by the host will be accepted immediately since T1 = T
always provides an answer to the question asked. In a sense, we can conclude
that no useful computation has been done by this solution other than the re-
ceiving of the proposed time by means of the communicative actions.

6.4. USING TELL AND ASK FOR MEETING SCHEDULING 93

Second Attempt:

The second attempt to implement the negotiation between host and invitee is to
introduce a new predicate proposal(Meetld, T, L, Att) which is not used for other
purposes and implement the protocol by using this predicate. The advantage
of using this new predicate, of course, is that now we no longer have to worry
about inconsistencies. The basic idea of the protocol is that the receiving agent
either accepts or proposes a counterproposal, so we introduce a new predicate

count_prop(Meetld, T', L, Att)

which the receiving agent will use to derive a counterproposal given a proposal
of the other agent. The idea thus is to replace req actions with a tell action
of the form tell(a, proposal(Meetld, T, L, Att)) and offer actions with actions of
the form ask(a, count_prop(Meetld, T', L, Att)).

Of course, for this idea to work, we need to define a logical relation between
the predicates proposal and count_prop. Because we want the receiving agent
to derive a counterproposal from a received proposal, we need to state the
conditions which allow the derivation of a counterproposal from a given proposal.
Intuitively, we thus need to state these conditions in the antecedent of a clause
with consequent count_prop(Meetld, T', L, Att). A counterproposal must satisfy
at least two conditions. First, the time 7' that is counterproposed must be
later than time T of the given proposal (in order to obey the strategy of the
participants outlined above). Secondly, the time 7" that is counterproposed
must be the earliest time possible after the proposed time 7. The following
clause therefore seems both intuitive and plausible:

(proposal(Meetld, T, L, Att) A T' > TA
(VT1-T < T1< T — —meet(Meetld, T1, L, Att)))
— count_prop(Meetld, T', L, Att)

The main problem with this clause, however, is, as in the first attempt, that
it is possible to prove that a proposal proposal(Meetld, T, L, Att) is accepted
straight away. The point is that by choosing T' = T (such that the time that
is counterproposed equals proposed time) it is always possible to derive the
counterproposal count_prop(Meetld, T', L, Att) A T' = T (since the antecedent
of the implication in that case trivially follows). The consequence of this solution
thus is that again no useful computation other than the receiving of the proposed
time has been achieved, and some other part of the program needs to compute
a time for a counterproposal.

A Solution:

By analysing what went wrong in the previous attempt we can come up with
a working solution. The main problem with the second attempt is that the
incorporation of the condition that there exists no earlier possible meeting time
in the antecedent did not work. In fact, the attempt also suffered from the
problem that all constraints in the belief base of the agent might be violated.
Furthermore, we need to compute a time T' which is the earliest possible meeting

94 CHAPTER 6. MEETING SCHEDULING

time instead of assuming such a time is given (as in the previous attempt in the
antecedent).

The solution that we present now again will make use of the predicates
proposal(Meetld, T, L, Att) and count_prop(Meetld, T', L, Att). The idea is the
same as in the previous attempt and requests are to be replaced by

tell(a, proposal(Meetld, T, L, Att))

where a is substituted appropriately by either the host name Host or the in-
vitee name Invitee. The offers, however, cannot simply be replaced by the
action ask(a, count_prop(Meetld, T', L, Att)) as was shown above. We need to
find another, more complex formula to replace the count_prop proposition. We
also need to redefine the logical relation between the proposal and count_prop
predicates. We propose the following definition:

proposal(Meetld, T, L, Att) A T' > T — count_prop(Meetld, T', L, Att)

Thus a counterproposal can be derived from a proposal if it proposes a meeting
time T’ later than or equal to that of the given time T of the proposal. The
implication codes part of the strategy that agents use to make counterproposals.
That is, the strategy to counterpropose a later time than the one proposed.

The conditions formulated in the antecedent for deriving a counterproposal,
however, are obviously too weak. A counterproposal may still violate the in-
tegrity constraints associated with meetings. To remedy this, the receiving
agents need to code these constraints in their questions which replace the offer
actions in the program of the previous section. By incorporating the integrity
constraints in a slightly changed form in the questions, we can deduce that the
time T’ that is counterproposed meets all the constraints. We simply check
whether the proposed time T’ satisfies the constraints one by one in the ques-
tion. The ask action that we are looking for then looks like this:

ask(count_prop(Meetld, T', L, Att) A
(VT1-T<T1< T — —meet(Meetld, T1, L, Att)) A
(V Meetld1, T1, L1, Attl - (meet(Meetld1, T1, L1, Attl) A
T'"<TI1< T'+L)— Attl N Att = @) A
0:00<L<8:00A
T'>8:0AT +L<18:00
)

As can easily be checked, the three latter conjuncts correspond to the integrity
constraints (2), (3), and (4) introduced earlier. We do not need to list the first
constraint, since we assumed that the meeting identifier Meetld is a new and
unique one. Also note that the constraint 0 : 00 < L < 8 : 00 can be dropped
(the negotiation should not have been started if the length of the meeting that
is being negotiated violates this constraint).

Although we believe this solution works, it has a number of disadvantages.
The main disadvantage is that the integrity constraints have to be explicitly

6.5. BINARY SEMAPHORES 95

mentioned everywhere in the plans of agents and a more general approach to
deal with integrity constraints is sacrificed for a reduction of the number of
communication primitives. The simplicity of the solution given in terms of
req and offer in the previous section is also lost. We believe this shows that the
new communication primitives provide additional expressivity that is useful and
moreover is not provided by the tell and ask primitives.

6.5 Binary Semaphores

The two-agent meeting scheduling problem was relatively simple because the
host only had to negotiate with one other agent. The restriction to two agents
especially simplified the problem of synchronising negotiation rounds. We would
like to generalise the two-agent solution to a solution for arbitrary numbers of
agents. The most simple idea to extend the two-agent solution to a multi-agent
solution of more than two agents seems to be to let the host negotiate with all
the other agents simultaneously (in parallel, that is). Each negotiation round
the host then has to manage n subgoals for negotiating with all the invitees. In
that case, the basic problems that have to be solved are the problem of shared
resources and the problem of synchronising multiple subgoals (of the host). The
solution that we propose is to use semaphores. In this section, we show how we
can implement semaphores in 3APL.

A semaphore is a facility well-known from concurrent programming (Andrews
1991). One of the problems which arises in concurrent programming is how to
manage different concurrent processes which access some shared object. The
part of a concurrent program which accesses the shared object is called a crit-
ical section. Semaphores are used to guarantee mutual exclusion of critical
sections. Interferences between critical sections which share some object is pre-
vented in this way. A semaphore has two associated operators, the P(s) and
'V (s) operators. The P(s) operator decreases the semaphore s until some lower
bound is reached. The P(s) acts like a guard and allows a process to enter
its critical section only if the lower bound on the semaphore has not yet been
reached. The V(s) semaphore increments the semaphore, thereby indicating
that other processes may use the shared resources again. In particular, a binary
semaphore allows that at most one process is executing its critical section at
a time. As an aside, we remark here that binary semaphores can be used to
implement arbitrary semaphores (cf. Andrews (1991)).

For our purposes, binary semaphores are sufficient. To implement semaphores
in 3APL, we use the synchronous communication primitives tell and ask. The
idea is to introduce a new agent sem, for each agent a which keeps track of
the semaphores that are used by agent a. Such an agent is called a semaphore
agent for a and goes by the name sem,. To keep track of the semaphores used
by agent a, a semaphore agent sem, adopts one goal for each binary semaphore
s that is used by agent a.

Although our informal explanation of a semaphore explained the workings of
a semaphore as an entity that is being raised and lowered, in our implementation

96 CHAPTER 6. MEETING SCHEDULING

of a semaphore we will not use variables that are increased and decreased.
Instead, a propositional symbol p, will be used by the semaphore agent with
the informal interpretation that the critical section may be entered. An agent
that wants to enter its critical section that is guarded by a semaphore s will ask
its semaphore agent to confirm p,. An agent that exits a critical section will
tell its semaphore agent ps. The informal explanation of raising and lowering
a semaphore, however, can still be used to understand the way a semaphore
works.

The semaphore agent sem, continually executes a goal semaphore; for each
semaphore s. The following plan rule provides a plan to implement semaphore
goals and should be included in the rule base of the semaphore agent sem,:

semaphore; < true |
tell(a, ps);

ask(a, ps);
semaphores

The P(s) and V(s) operators which are used by an agent then can be defined
by:

P(s) = ask(semq, ps)
V(s) = tell(semg, ps)

It is not hard to see that s is a binary semaphore, and only one goal is allowed
to enter a section guarded by the semaphore s (by using P(s) and V(s)) at a
time. The tell in the semaphore goal can be viewed as a stopping sign which
may only be passed if no other goal is currently in a critical section. The P(s)
command waits until the semaphore ‘tells’ it it may enter its critical section.
When leaving its critical section, the goal should again ‘tell’ the semaphore goal
that it is allowed to let other goals enter their critical section. This is realised
by implementing the V(s) command as a tell action.

6.6 Multi-agent Meeting Scheduling

Meeting scheduling in the case of more than two agents is considerably harder
than for two agents. The host of the meeting now has to contact all the invitees
to the meeting, and has to compute a common meeting time from the proposals
for meeting times that the invited agents have made.

Basically, our task is to rewrite the invite plan of the host such that it
can deal with any number of agents. (As we will see, the reply plans can be
reused.) For this purpose, we assume that the host has a list of agents that
will be invited for the meeting. With each of these agents, the host has to
negotiate about a feasible meeting time. The main negotiation goal thus can
be split up and each of the individual negotiations with invited agents can be
viewed as a subgoal of the host’s goal of negotiating a meeting time with the

6.6. MULTI-FAGENT MEETING SCHEDULING 97

group of invitees. Accordingly, in the host agent, we will create a number of
subgoals corresponding to the number of invitees. For this purpose, we use the
post operator defined in chapter 4 for posting a goal.

For administrative purposes, we introduce a number of new predicates.
These predicates are used to keep track of a number of parameters in each
of the negotiation rounds and to conclude that an agreement has been or has
not yet been reached. First, the predicate count(Set, N) returns the number
N of items in a set Set. It is used to compute the number of participants of a
proposed meeting.

The strategy that the agents use is the same as that used by the agents
in the two-agent case. Each agent proposes the earliest time at which - as far
as that agent is concerned - the meeting can be scheduled. Each round of the
negotiation the host requests all the invitees to respond to his proposal for a
meeting time. A predicate invitee(Meetld, N) is introduced to keep track of the
number of invitees that have responded so far in a round to the proposal of the
host. If the number is the same as the number of invitees, this indicates that the
host may start a new round in the negotiation. A predicate disagree(Meetld, N)
is used to count the number of agents in a round which (still) disagree with the
proposal of the host. If this number is 0, an agreement has been reached, and
the negotiation is finished. A predicate bestproposal(Meetld, Time, Length) is
used by the host to store the best proposal made so far in a negotiation round.
The best proposal is identified with the proposal which schedules the meeting
at the latest time.

Remark 6.6.1 Before we present the negotiation plans of the host, we make
a few remarks about the update semantics of the action ins. Needless to say,
we assume that ¢ is implied if ins(p) is executed (successfully). However, we
will also require that the set of integrity constraints is never violated by the
execution of an action ins(y). To insert a new belief into the belief base, it thus
may be necessary to remove some of the current beliefs to maintain the integrity
constraints, and here we diverge from the earlier definition of ins presented in
chapter 3. Furthermore, we assume that the changes made to the belief base
are minimal in a some suitable sense (cf. Girdenfors (1988)).

Finally, we will assume that the following constraint holds for all predicates p
from the set of predicates {invitee, disagree, bestproposal} that were introduced
above:

(@1,) ADW1s- 5 Un)) D2 T = A ... ATy = Y

This constraint states that at most one tuple can have property p at a time
and implies that for an ins(p(t1,. .., t,)) action to be successful it has to remove
any current beliefs about p before a new belief p(t1,...,t,) can be inserted
into the belief base. Moreover, for each of the predicates invitee, disagree, and
bestproposal we assume that ins always can be successfully executed.

Now we are able to present the plans for the host to negotiate with arbitrary
numbers of agents. We distinguish two types of plans. The first type of plans

98 CHAPTER 6. MEETING SCHEDULING

is used by the host to initiate and to structure the negotiation process itself.
The second type of plan is used by the host to deal with the negotiation and
communication between the agents.

The first plan initiate negotiation consists of a number of instructions to
set up the initial conditions of the negotiation and introduce a set of plans to per-
form the actual negotiation. The plan initialises the predicates invitee, disagree,
and bestproposal and creates a number of subgoals. Each of these subgoals cor-
responds to one of the invitees and is introduced to specifically negotiate with
that invitee. The subgoal initiate_indiv_negotiation creates these subgoals.
The predicates invitees, disagree and bestproposal are introduced for bookkeep-
ing purposes. Initially, non of the N invitees has agreed to a meeting time. This
fact is represented by disagree(Meetld, N). invitee(MeetId, M) is used to rep-
resent the number of invitees that have responded to the host’s proposal. Since
initially none of the invitees has responded the proposition invitee(Meetld, Q)
is inserted into the host’s beliefs. The proposition bestproposal(Meetld, T, L) is
inserted into the host’s beliefs because initially the best proposal on the table
is the initial proposal of the host itself. The subgoal negotiation introduces a
plan that structures the negotiation.

We use the expression Set — Item to denote the set obtained from removing
Item from Set. Below, the variable Att denotes a set of agents.

initiate negotiation(Meetld, T, L, Att) <+ true |
count(Att — Host, N)?;
ins(bestproposal(Meetld, T, L));
ins(disagree(Meetld, N));
ins(invitee(Meetld,0));
initiate_indiv_negotiation(Att — Host, Meetld, T, L, Att);
negotiation(Meetld, Att)

The negotiation plan, the second plan, is used to structure the negotiation
into several distinct rounds. It waits until all N invitees have responded to
the request of the host to schedule the meeting at a particular time (which is
dealt with by the subgoals to negotiate with each invitee individually). For this
purpose, the predicate invitee which keeps track of the number of participants
that have responded so far is used in the test invitee(Meetld, N)?. If all agents
have responded, the negotiation plan checks whether an agreement has been
reached. If so, disagree(Meetld,0) must hold, and the best proposal so far is
retrieved and used to schedule the meeting by means of the schedule meeting
subgoal. In case an agreement has not yet been reached, a new round is started
by reinitialising the predicates invitee and disagree for the next round.

6.6. MULTI-FAGENT MEETING SCHEDULING 99

negotiation(Meetld, Att) <+ true |
count(Att — Host, N)?;
invitee(Meetld, N)?;
IF disagree(Meetld,0)
THEN begin
bestproposal(Meetld, T, L)?;
schedule meeting(Meetld, T, L, Att);
end
ELSE begin
ins(disagree(Meetld, N));
ins(invitee(Meetld,0));
negotiation(Meetld, Att)
end

The next two plan rules are used to create the subgoals of the host to nego-
tiate with each of the invitees individually. The post operator is used for this
purpose and posts for each of the invitees an invite subgoal.

initiate_indiv_negotiation(Invitees, Meetld, T, L, Att)
— Invitee € Invitees |
post(invite(Invitee, Meetld, T, L, Att));
initiate indiv negotiation(Invitees — Invitee, Meetld, T, L, Att)

initiate_indiv_negotiation(Invitees, Meetld, T, L, Att) <
Invitees = @ |

The initiate_indiv_negotiation goal creates a set of parallel invite
goals in the goal base of the host. Each of these goals is used by the host
to simultaneously deal with individual negotiations with invitees. The set up
for the host thus creates a goal base which includes a goal negotiation to
structure the negotiation and a number of goals corresponding to the number
of invitees to deal with individual negotiation. All of these goals run in par-
allel and are synchronised by means of binary semaphores and communication
through the shared belief base of the host.

The previous plans were all designed to initiate and structure the negotiation
process. The last plan of the host is a plan for negotiating with each of the
individual invitees. The subgoals created to negotiate with each of the invitees
are invite goals that are similar to the two-agent case, but some changes have
been made. In particular, the evaluation phase of the plan for invite goals in
which the proposals of the invitees are evaluated has to be revised in order to
consider the proposals of all of the invitees. The negotiation phase, however, has
not been changed. The simple strategy that the host uses in the evaluation phase
is to select the proposal that proposes the latest time and is also compatible
with the host’s own constraints as the ‘winning’ proposal. In case there is no
such proposal, the host computes a new meeting time that is later than all
proposed times and that is suitable from its own perspective. The negotiation
then continues with this new tentative meeting time.

100 CHAPTER 6. MEETING SCHEDULING

The subgoals of the host which negotiate with the invitees have to commu-
nicate with each other about the proposals they receive from the invitees. The
communication between the subgoals is achieved by means of the belief base and
the predicate bestproposal. Each of the subgoals compares its received proposal
with the latest proposal for a meeting time stored in the belief base of the agent
as bestproposal(Meetld, T, L). It also raises a counter invitee(Meetld, N), to
indicate that it did receive a proposal and is waiting for the next round of the
negotiation. The evaluation phase is a critical section in the plans and mutual
exclusion needs to be guaranteed between the different subgoals since in these
sections of the plans the predicate bestproposal is updated. Binary semaphores
are used to implement the mutual exclusion of the subgoals. The P(bp) operator
increments the semaphore, and the V(bp) operator decreases the semaphore.

invite(Invitee, Meetld, T, L, Att) <+ true |
req(Invitee, 3 T'1 - epmeet(Meetld, T1, L, Att, T));
offer(Invitee, meet(Meetld, T', L));
P (bp);
bestproposal(Meetld, TentativeTime, L)7;
IF TentativeTime < T' THEN ins(bestproposal(Meetld, T', L));
disagree(Meetld, M)?;
IF T = T' THEN ins(disagree(Meetld, M — 1));
invitee(Meetld, N)7;
ins(invitee(Meetld, N + 1));
V(bp);
* wait until every agent has replied and a new round begins:
* invitee(MeetId,0) is inserted by the negotiation plan;
* after insertion of this fact start a new round.
invitee(Meetld,0)?;
IF disagree(Meetld,0)
THEN tell(Invitee, confirm(Meetld, T"))
ELSE invite(Invitee, MeetId, T', L, Att)

Finally, we repeat the plans for the invitees to reply to the host. The plans
for the reply goals of the invitees do not have to be changed and are still
applicable.

reply(Host) « true |
begin
offer(Host, meet(Meetld, T, L, Att));
req(Host,3 T1 - epmeet(Meetld, T1, L, Att, T));
reply(Host)
end+
ask(Host, confirm(Meetld, T))

6.7. CONCLUSION 101

6.7 Conclusion

We illustrated the use of the new communication primitives by an extended
example concerning meeting scheduling agents. We implemented a multi-stage
negotiation protocol, both for the case where only two agents are involved in
the negotiation and the case where an arbitrary number of agents are involved
in the negotiation. The implementation is both natural and concise. The latter
illustrates the expressive power of the communication primitives, while the for-
mer shows that the agent programming language 3APL is a natural means
for programming personal assistants. Furthermore, we implemented binary
semaphores by using the tell and ask primitives. These were used in the im-
plementation of the multi-stage negotiation protocol for an arbitrary number of
agents.

Part 11:

Comparing Agent Languages

Agent-based computing in Artificial Intelligence has given rise to a number of
diverse and competing proposals for agent programming languages. Agents, in the
sense we are using it, are computational entities with a mental state consisting of
components like the beliefs, the goals, and the intentions of that agent. A number
of languages are based on this notion or based on similar programming concepts.
In particular, the agent languages AGENTO (Shoham 1993), AgentSpeak(L) (Rao
19964) and ConGolog (Giacomo et al. 2000) are based on concepts that are similar
to those of 3APL.

At first sight, it is not so clear, however, how these various programming lan-
guages are related to one another. There are several reasons why it has been
difficult to evaluate and compare the relative benefits and disadvantages of dif-
ferent systems for programming agents. One of the main reasons, in our opinion,
is the lack of a general semantic framework which provides a suitable basis for
language comparison. Moreover, it is not so easy to compare agent programming
languages because of the fact that they do not all have a formal semantics.

The operational semantics that we have been using, however, does provide a
basis for such comparison. Transition systems can be used both for the specifi-
cation of a semantics for programming languages which do not yet have a formal
semantics, as well as for a formal comparison of languages which are formally de-
fined. It is our aim in this second part of the thesis to study and compare the four
agent languages mentioned above. AGENTO0, which does not come with a formal
semantics, is analysed and provided with a formal operational semantics using a
transition system. As for the other languages that do have a formal semantics,
we develop a general method for comparing these programming languages. The
method is based on the concept of a bisimulation. As it will turn out, the four
languages AGENTO, AgentSpeak(L), ConGolog and 3APL form a family of closely
related programming languages for agents.

CHAPTER 7

An Operational Semantics
for AGENTO

AGENTO is an experimental programming language for programming intelli-
gent agents that has been designed by Shoham (Shoham 1993). An intelligent
agent in AGENTO is an entity with a mental state, consisting of the beliefs and
commitments of the agent, that is capable of interacting with its environment
and deciding what to do. So-called commitment rules provide the basic means
for decision-making and the introduction of new commitments.

In this chapter, we design an operational semantics for AGENTO which is
formal and facilitates a precise comparison with other agent languages. This
semantics provides a detailed analysis of AGENTO and - we believe - enhances
our insight into agents and agent programming in general. Although our main
focus is on providing a formal semantics which provides a basis for compari-
son with other languages and with clarifying the notion of agent programming
in general, we also discuss some of the more methodological issues raised in
Shoham’s papers (Shoham 1991, Shoham 1993, Shoham 1994). In particular,
we discuss why it is important to specify a formal semantics for an agent pro-
gramming language and comment on the relation between the logic defined in
(Shoham 1993, Shoham 1991) and the language AGENTO.

The chapter is organised as follows. First, we motivate the need for a for-
mal semantics for the programming language AGENTO and argue that such a
semantics cannot be derived from the modal logic for reasoning about beliefs,
choices, etc. as introduced in (Shoham 1993, Shoham 1991). In section 7.2, we
give an informal overview of AGENTO. In section 7.3, a subset of AGENTO is
identified for programming single agents. This subset is called the single agent
core of AGENTO0. Tt is for this subset that we provide a formal semantics.
In section 7.4, we then present a formal, operational semantics for AGENTO.
This semantics specifies the meaning of the basic constructs in the language.
Finally, in section 7.5, we discuss the AGENTO interpreter and in particular

103

104 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

the decision-making of agents in AGENTO0. Our account reveals an interesting
difference in the style of decision-making between AGENTO agents and agents
programmed in AgentSpeak(L) or 3APL.

7.1 Defining The Agent-Oriented Paradigm

The programming language AGENTO0 supports the construction of agent pro-
grams. In (Shoham 1993), agents are defined as entities ”whose state is viewed
as consisting of mental components such as beliefs, capabilities, choices, and
commitments.” AGENTO supports the construction of such agents by offering
programming constructs which are viewed as the formal counterparts of these
mental concepts. The programming constructs stand in rough correspondence
to their common sense counterparts. That is, the goal is to obtain a close
enough resemblance to be suggestive and useful when programming agents, or,
as Shoham puts it, to make engineering sense out of these abstract concepts”
(Shoham 1991).

The emphasis on mental states in agent-oriented programming makes it im-
perative to state precisely and explicitly what such a state is. For this rea-
son, part of the agent programming paradigm in (Shoham 1991, Shoham 1993,
Shoham 1994) is to provide a formal semantics of the mental state of agents.
The means by which the mental terminology is made precise in these papers
is provided by a formal modal logic. This approach is also used to define the
mental components in the programming language PLACA (Thomas 1993), a
successor of AGENTO.

The modal logic used to define the modal components of AGENT0 agents
has been described in most detail in (Shoham 1991). The basis for the modal
logic is an ”explicit-time point-based logic”. This temporal logic is extended
with a KD45 operator (Chellas 1980) for modelling belief and a KD4 operator
for modelling commitment. In terms of these operators, a choice of an agent
is defined as a commitment to itself, and the capability to (see to it that) X
(where X is a proposition) is defined as a conditional: if the agent chooses to
X, then X should be the case.

In (Shoham 1993), an informal account is provided of the agent programming
language. The features of agents written in the programming language include
constructs for referring to time points, beliefs, capabilities, actions, commitment
rules for committing to actions, and communication. These constructs only
roughly correspond to the operators of the logic. There are more differences
than similarities. To name only a few, the programming language includes an
explicit representation of actions whereas the logic does not, commitments are
defined in terms of these actions in the programming language (chosen actions)
whereas commitment is a primitive notion in the logic, and the dynamics of
the execution of agents is not modelled in the logic but is implemented by
commitment rules in the programming language.

For these and other, similar reasons, there is no clear link between the modal
logic and AGENTO0. The formal semantics of the logic, therefore, contrasts

7.2. OVERVIEW OF AGENTO 105

with the lack of a formal semantics for the agent programming language itself.
The situation here is analogous to that of definitions of agent communication
languages where (i) a logical semantics is defined which is supposed to define
the semantics of the communication language but (ii) it is not clear how this
semantics is related to an operational semantics for computational agent systems
(cf. also section 5.5).

There are a number of reasons why it is important to specify a formal se-
mantics which precisely defines the meaning of the programming constructs in
AGENTO, and other agent languages. First of all, the construction of a formal
semantics requires a detailed analysis and may reveal inconsistencies or gaps
in informal accounts of software systems. As our analysis will show, there are
several such gaps in the informal account of AGENTO0. Such an incomplete
specification may give rise to ad hoc implementations that differ in important
aspects. Secondly, a formal semantics explains in a precise and explicit manner
the meaning of the programming language constructs and thereby enhances our
understanding of agent programming and agents in general. It also provides a
formal definition of the rule-based decision-making and other features of agents.
A formal semantics thus facilitates the programming of agent systems. Third,
a formal semantics allows for a detailed comparison with other agent program-
ming languages. In particular, the proposal of a formal semantics for AGENTO
highlights an interesting difference in the decision-making of AGENTO agents
and that of agents written in AgentSpeak(L) (Rao 1996a) and 3APL. Finally, a
formal semantics is a first step towards a programming logic for reasoning about
agent programs written in AGENTO.

7.2 Overview of AGENTO

Agents are controlled by agent programs. In AGENTO, these programs are exe-
cuted by an interpreter which continuously executes a control loop consisting of
two phases: A phase in which the mental state is updated and a second phase in
which actions (current commitments) are executed. In the first phase, messages
that are received from other agents are processed and the commitment rules as-
sociated with an agent are fired. Messages can change both the beliefs as well as
the commitments of an agent. By firing commitment rules, new commitments
may be introduced without changing the commitments that already have been
made.

We will now give a somewhat more detailed overview of the constructs
that are included in the language AGENTO to program agents. First of all,
the beliefs of an agent are simple, time-stamped, atomic formulas, also called
facts, from a first order language with explicit time, written like (1march/10:00
(employee(John))). The programming language has a number of different
types of actions. The first, most basic type is a so-called private action and
is written like (DO 18april/9:00 issue_boarding pass). Note that these
actions are also time stamped. The time indicates the time associated with
the execution of the action (if it is executed). Three communication actions

106 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

are provided. An action to inform an agent of a fact, written like (INFORM
lmarch/2:00 smith (18april/10:00 (flight sf ny #293))) which informs
Smith on 1 march at 2:00 that on 18 April 10:00 a flight with number 293 from
San Francisco to New York is scheduled. Two more communication primitives,
the REQUEST and the UNREQUEST primitives, are supported. These primitives
allow an agent to send requests to perform an action to another agent and to
request an agent to drop a commitment to a particular action. Finally, condi-
tional actions of the form (IF mntlcond action) where mntlcond is a condi-
tion on the mental state and refrain actions of the form (REFRAIN action) can
recursively be constructed from more simple actions.

Commitments of an agent consist of actions that an agent has chosen to
perform at a particular time. The decision to perform an action is regulated by
commitment rules of the form (COMMIT msgcond mntlcond (agent action))
where msgcond is a condition on the received messages and mntlcond is a con-
dition on the current mental state of an agent. The rule can be fired if both
conditions are satisfied. Conditions on the mental state are boolean combina-
tions of simple conditions on the beliefs of the form (B fact) and simple condi-
tions on the commitments of the form ((CMT agent) action). The agent that
is associated with the action action is the agent to which the commitment is
made. Conditions on the messages are boolean combinations of simple message
conditions of the form (agent INFORM fact) or (agent REQUEST action).!
Finally, these conditions may include a number of different types of variables.
As an example, the commitment rule

(COMMIT (?a REQUEST ?action) (B (now (myfriend ?a))) (?a ?action))

can be fired if a request to perform 7action from agent 7a has been received
and the agent believes that 7a is a friend. The constant now is a special constant
referring to the current time. Upon firing, the agent commits to action 7action
and records that the commitment is made to agent 7a. Thus, commitment rules
provide a mechanism for making decisions in AGENTO0. In the interpreter for
AGENTO, this decision-making occurs in the first phase.

To summarise, the agent programming language AGENTO includes features
for representing the domain of interest (beliefs), to perform actions (simple,
conditional and refrain actions), for interacting with agents (communication
primitives), and for making commitments (by means of commitment rules).
Each agent has it own associated set of capabilities, and actions and beliefs are
explicitly associated with a particular time.

11t is not so clear why message conditions of the form (agent UNREQUEST action) are not
allowed. Message conditions of this form would allow an agent to commit to an alternative
plan of action, in case it is requested to drop a commitment but it still wants to achieve the
goal associated with the commitment.

7.3. THE SINGLE AGENT CORE OF AGENTO 107

7.3 The Single Agent Core of AGENTO

The number of features present in the language AGENTO is somewhat over-
whelming. It is hard to understand the interaction between so many features and
difficult to program with no clear understanding of the meaning of so many con-
structs. For simplicity, we therefore define a semantics for a subset of AGENTO
constructs. This semantics is a first approximation to a semantics which in-
cludes all features. The subset we consider in this chapter includes all features
except for multi-agent communication and explicit reference to time. We call
this subset the single agent core of AGENTO.

Remark 7.3.1 (an interaction problem)

One of the possible conflicts that might arise because of the interaction of several
features in AGENTO is a problem due to the combination of time stamped
actions and time stamped beliefs. Although Shoham is not too clear about the
semantics of actions, the idea of assigning an update semantics to actions (as we
do below) runs immediately into problems due to the time stamping of actions
and beliefs. Because of this time stamping, it is not possible to specify the
semantics of actions individually and specify the joint execution of a number of
actions by an interleaving semantics. Instead, we need to take into account the
effect of arbitrary sets of actions executed at a particular moment.

As a simple example, consider an AGENTO agent that has scheduled the
actions move_north and move_south to be executed both at time t+1 and rep-
resents its position at time t by the predicate (t (loc(x,y)). We are inter-
ested in the effect of executing both actions at time t+1 on the beliefs of the
AGENTO agent. In case it would make sense to specify the semantics of each
action separately, it should be possible to compute the effect of executing both
at the same time from the specifications for each of the two actions. Given that
the position is represented by (t loc(x,y)), a simple idea would be to define
both move north and move_south as updates that replace (t (loc(x,y)) in
the belief base with, respectively, (t+1 (loc(x,y+1)) or (t+1 (loc(x,y-1)).

However, given these semantic definitions of the actions, it is not clear any-
more how to define the semantics of simultaneously executing both actions.
Informally, executing both actions simultaneously should not result in a change
in the position of the agent at all. We cannot therefore choose to insert only one
of the two updates; that is, choose to insert either (t+1 (loc(x,y+1)) or (t+1
(Loc(x,y-1)) (which an interleaving semantics would do). Moreover, it is also
quite obvious that we cannot insert both locations because of the resulting in-
consistency of the beliefs of the agent. To solve these problems, it seems that we
need to define the effect of simultaneously executing both actions from scratch
and it is not possible to compute the effect from the semantics of the individual
actions. The combination of time and actions thus may cause an interaction
problem which is revealed by an attempt to specify a formal semantics for this
combination of features.

The single agent core as we have defined it includes beliefs, capabilities, three
types of action, commitments, and commitment rules. The specification of the

108 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

formal semantics for this core is based on the informal explanation of AGENTO0
in (Shoham 1993). Although we have tried to stay as close as possible to the
intended meaning of AGENTO constructs, our semantics is a reconstruction from
the informal text in (Shoham 1993). Our strategy for defining the semantics of
AGENTO is to separate the specification of the meaning of the basic constructs -
like the beliefs and rules - and the specification of an interpreter. This strategy
has also been used to specify the agent language 3APL (cf. Hindriks et al.
(19994), and Hindriks et al. (1999b)). For a formal specification of an interpreter
for AGENTO we refer the reader to (Hindriks et al. 19995, Hindriks et al. 1999c¢).

In the following sections, the single agent core is introduced and the syntax
is formally defined. The syntax of the language is recast in a somewhat different
notation. This notation serves our purposes better and is more suitable as a
means for comparison of AGENTO with other languages than the syntax of
AGENTO as presented in (Torrance 1991, Shoham 1993).

7.3.1 Beliefs

An AGENTO agent essentially is a mental entity that operates on and manipu-
lates a database of beliefs. The language for beliefs used in AGENTO is a simple
fragment of first-order logic, namely the set of literals (atomic statements and
their negations). Beliefs are built from terms, predicates and negation. Here,
following (Shoham 1993), we define a term as either a constant or a variable.
These restrictions on the beliefs of an agent seem unnecessarily restrictive. Since
no functions are allowed, nor Prolog-like programs, the computational expres-
siveness at this level is restricted to a bare minimum (and basically consists of
pattern-matching). However, for our purposes this is of no real interest.

Definition 7.3.2 (terms, atoms, literals)

Let (Pred, Cons) be a signature, where Pred is a set of predicate symbols, and
Cons is a set of constant symbols, and let Var be a countably infinite set of
variables. Then the set of terms Term, the set of atoms At, and the set of literals
Lit are defined by:

e Var C Term, Cons C Term,
e if p € Pred of arity n, and #,...,t, € Term, then p(¢1,...,t,) € At,
e if p € Pred of arity n, and #,...,t, € Term, then p(t1,...,1,) € Lit and
—p(t1,...,ts) € Lit.
7.3.2 Actions

When communication and time is left out of AGENTO, three types of actions re-
main: (i) simple actions of the form (D0 <privateaction>), constructed from
a given set of so-called private actions, (ii) conditional actions of the form (IF
<mntlcond> <action>), where <mntlcond> expresses a condition on the men-
tal state of the agent, and (iii) refrain actions of the form (REFRAIN <action>).

7.3. THE SINGLE AGENT CORE OF AGENTO 109

The refrain action (REFRAIN <action>) is a type of action that precludes com-
mitment to actions of the form <action>.?

First, we formally define the syntax of the most basic actions, called private
actions, and for reasons that will become clear below we currently postpone the
formal introduction of the other types of actions.

Definition 7.3.3 (private actions)
Let Asym be a set of action symbols. Then the set of private actions Pact is
defined by:

Pact = {a(t1,...,t,) | a € Asym of arity n, and #,...,t, € Term}

The definition of actions provides an instructive example of the mismatch
between the modal logic for defining the mental state and the programming
language. Although in (Shoham 1993) it is stated that ”in the programming
language” actions are ”introduce[d] [...] as syntactic sugar”, actually, in the
programming language an explicit construct DO is introduced and the so-called
private actions may range from ‘retrieval primitives’, ‘mathematical procedures’
to robotic, physical actions. As an example, in the manual (Torrance 1991) of
AGENTO0, a number of basic or primitive actions programmed in Lisp are pro-
vided. These primitive actions are not propositions, but are explicit actions
useful for programming agents in AGENTOQ. Moreover, the programming lan-
guage allows complex conditional and refrain actions which have no counterpart
in the modal logic. And finally, a number of communicative actions are sup-
ported by the programming language which are not present in the logic.

In the modal logic as defined in (Shoham 1991, Shoham 1993), the most
primitive actions, called private actions, are represented by propositions. In the
logic no explicit and distinct representation for actions is present nor are there
any modalities for actions incorporated into the logic as in, for example, dynamic
logic (Harel 1979). In (Jones 1993), in particular this feature is criticised. The
specific axioms of the logic which are proposed in (Shoham 1991) turn out
to have the highly counter-intuitive consequence that if an agent cannot do
something, then it believes that it can do it. To secure consistency within the
logic, as a consequence, an agent cannot believe that it is incapable of anything.
In (Jones 1993), the main conclusion is that the core of this problem is due (in
part at least) to the absence of an explicit representation of action.

For these reasons, there is a mismatch between the programming language
and the modal logic in (Shoham 1993) in the representation of actions. In
particular, whereas in the logic commitments are represented as obligations to
a fact holding, in the programming language an agent commits to actions to
change its mental state. As a consequence, the requirement that commitments
to actions should be ”internally consistent” makes only sense in the logic but not
in the programming language. Moreover, the principle of ”good faith” which
requires that a commitment to see to it that a proposition holds implies that
the agent believes that the proposition will hold cannot straightforwardly be

2 According to Shoham, the refrain action ”is really a non-action” ((Shoham 1993), p. 72).

110 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

translated to a statement about the programming language. Also, the persis-
tence conditions with respect to beliefs and commitments are only discussed
informally in (Shoham 1993); no formal semantic account for either the logic or
the programming language is provided.

7.3.3 Variables

In (Shoham 1993) a number of different types of variables are introduced. The
types of variables in AGENTO include variables ranging over agents, beliefs, and
action statements as well as first order variables. For our purposes, the first type
- agent variables - are not very interesting since we focus on the single agent
core of AGENTO. Therefore, we do not include these variables. The second
type of variables in the list, variables ranging over beliefs, provides a kind of
higher-order feature concerning information, whereas the third type provides a
higher-order feature concerning actions. They are, however, not included in the
BNF syntax definition in (Shoham 1993). In the absence of any complex beliefs
or complex actions constructed by means of regular programming operators, we
have doubts concerning the use of both types of variables. In this context, it
seems to allow only for very simple pattern matching. For example, a rule could
be programmed which expresses that if the agent is committed to some action, it
should inform another agent that the agent is currently busy. In (Shoham 1993),
some examples are provided of variables ranging over beliefs, but no interesting
examples are offered for variables ranging over actions. The intended semantics
of these variables is also not entirely clear. As far as variables are concerned,
we therefore discuss only first order variables.

In (Shoham 1993), two types of first order variables are introduced, ‘ex-
istentially quantified’ and ‘universally quantified’ variables. Whereas the ‘ex-
istentially quantified’ variable is used similarly as variables are used in logic
programming, the semantics of the ‘universally quantified’ variable is less clear.
The use of a universally quantified variable, denoted by the prefix ”?!”, is illus-
trated in (Shoham 1993) by the following example:

(IF (B (t (emp 7!x acme))) (INFORM a (t (emp 7!x acme)))).

As explained in (Shoham 1993), this conditional action results in informing
all employees which are believed to have acme of that fact. The scope of the
‘universally quantified’ variable seems to be the entire conditional.

The combination of both types of variables, however, leads to a problem
concerning the order of the quantifiers. For example, what does a statement (IF
(B (friend ?!x 7y)) (INFORM a (friend ?!x ?7y))) mean? Does it mean
that agent a should be informed in case everybody has a friend or in case there
is somebody who is everybody’s friend?

Because of this problem, in this chapter we only allow one type, the ‘existen-
tially quantified’ variable ranging over the domain of discourse of the agent, and
do not consider a ‘universally quantified’ variable. In PLACA (Thomas 1993),
‘universally quantified’ variables have been left out of the language, and in
AGENTO they were not included in the actual implementation.

The types of variables allowed in the programming language provide another

7.3. THE SINGLE AGENT CORE OF AGENTO 111

example of the mismatch between the logic and the programming language. The
different types of variables in the programming language do not have counter-
parts in the logic. From the informal text, moreover, it is not easy to reconstruct
the intended semantics of the different types of variables in the programming
language.

7.3.4 Actions and Mental State Conditions

An AGENTO agent is allowed to inspect both its beliefs and its commitments
for decision-making. During the execution of (conditional) actions an agent is
also allowed to inspect its mental state. The beliefs of an agent are simple facts
(literals) from a first order language. The commitments of an agent are the
actions it has selected for execution. Together, the beliefs and commitments of
an agent make up its mental state.

Since conditions on mental states may refer to actions and (conditional)
actions may refer to mental state conditions, actions and mental state conditions
are defined by simultaneous induction. Perhaps in our definition of mental state
conditions we deviate the most from the syntax of AGENTO as introduced in
(Shoham 1993). Our reason for doing so is that we want to be as precise
as possible and at the same time aim at an operational semantics which can
be readily implemented. Although the logic-like notation in (Shoham 1993)
is very suggestive, the meaning of the notation is not so clear. In particular,
to understand the parameter mechanism of the programming language it is
important to have a formal semantics. Our notation is more suited for this
purpose, though it is less suggestive as the notation introduced in (Shoham
1993). We discuss these issues more extensively below when the operational
semantics is defined.

Actions are defined starting with private actions and mental state conditions
are defined as four-tuples consisting of: (i) a set of literals the agent should
believe, (ii) a set of literals the agent should not believe, (iii) a set of actions
an agent should be committed to, and, finally, (iv) a set of actions the agent
should not be committed to. A mental state condition is fulfilled if all of these
conditions hold.

Definition 7.3.4 (actions and mental state conditions)
The set of actions Act, and the set of mental state conditions MentCond is
defined by simultaneous induction:

e The set of actions Act:

— Pact C Act,

— if @ € Act and ¢,...,¢, € MentCond, then (¢1,...,¢, : a) € Act,
also called conditional actions,

— if @ € Act, then da € Act, also called refrain actions,

e The set of mental state conditions MentCond:

112 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

_if I*+,I- C Litand C*, C— C Act,
then (LT, L~, Ct, C~) € MentCond.

Informally, a conditional action (¢, ..., ¢, : a) is executed by testing whether
one of the conditions ¢; holds and, if so, continuing with the execution of action
a. A refrain action da removes commitments to actions of the form a. The ac-
tion a thus specifies the type of actions that should be refrained from. Finally, a
mental state condition (LT, L™, C*, C™) holds relative to a given mental state
if each of the literals in Lt is believed, none of the literals in L™ is believed,
each of the actions in Ct is committed to and none of the actions in C~ is
committed to.

7.3.5 Commitment Rules

The decision-making of AGENTO0 agents is implemented by so-called commit-
ment rules. Commitment rules introduce new commitments. They do not re-
move or modify the current commitments of the agent, but simply add new
ones. A commitment rule consists of two parts: (i) a condition on the mental
state of an agent and (i) an action (recall that we do not discuss communication
which explains the absence of message conditions in commitment rules). The
action part represents the new commitment that is to be made if the rule is
fired. A commitment rule thus (almost) has the same structure as a conditional
action, but for clarity and to be able to keep them apart we introduce some new
notation for commitment rules:

Definition 7.3.5 (commitment rules)
The set of commitment rules CommitRule is defined by:

o if (L*, L7, Ct,C~) € MentCond, and a € Act,
then C+,C~ — L*, L~ | a € CommitRule.?

7.3.6 Agent Programs

Now we have introduced the basic constructs in the language AGENTO, we are
able to define what an agent (program) is. Syntactically, an agent program is
a set of capabilities, a set of initial beliefs, and a set of commitment rules. The
set of capabilities in the program defines the expertise of the agent. Capabilities
consist of a mental state condition and a private action.* The condition specifies
under what (mental) condition the agent is capable of executing the action. The
initial beliefs specify what the agent believes, at the start of execution. Finally,
the commitment rules determine what types of decisions - new commitments -
the agent will make. Note that initially the set of commitments is supposed to
be empty. It is not clear from (Shoham 1993) why this is required.

3In the BNF syntax of AGENTO0, multiple actions are allowed in a rule instead of a single
action a. Since this feature can be simulated by rules with a single action, however, we have
restricted rules to the more simple format with a single action in the body.

4In the BNF grammar of AGENTO in (Shoham 1993) every type of action is allowed. In
the main text (p. 77) only private actions are allowed.

7.4. AN OPERATIONAL SEMANTICS FOR THE CORE OF AGENTO 113

Definition 7.3.6 (agent program)
An agent program is a tuple (Cap, oo, '), where

e Cap is a set of capabilities, i.e. a set of actions of the form (cy,..., ¢y : a),
where ¢; € MentCond for all ¢ and o € Pact,

e oo C Lit is the set of initial beliefs, and

e I' C CommitRule is a set of commitment rules.

7.4 An Operational Semantics
for the Core of AGENTO

In this section, we define a formal semantics that specifies the meaning of the
single agent core of AGENTO. The semantics of mental state conditions, actions
and commitment rules is defined. The semantics in this section is based on
the informal account of the programming language in (Shoham 1993) and only
discusses the logical approach when it offers a different perspective or there is a
difference between the two. Because the informal account is not always precise
or detailed enough, there are a number of gaps in the account in (Shoham 1993)
which we had to fill in to specify a semantics for AGENTO.

7.4.1 Transition Systems

The semantics we provide for AGENTO is an operational semantics. For this
purpose, we use a transition system which defines the computation steps an
AGENTO agent can perform. In agent-oriented programming, the notion of a
mental state is the basic concept. Agent programs can be viewed as transition
functions on mental states. The transition relation defined by the transition
system is a relation on mental states. It specifies how computation steps of an
agent program transform mental states. Because the commitment rules and the
agent’s capabilities do not change during execution, we do not include them in
the mental state and will not mention them explicitly anymore.

Definition 7.4.1 (mental state)
A mental state is a pair (II, o), where II C Act is a set of actions, also called
commitments, and o is a set of beliefs.

We assume that there are no occurrences of free variables in an agent’s belief
base (cf. also chapter 3).

7.4.2 Semantics of Mental State Conditions

In (Shoham 1993), no (informal) explanation is given of the semantics for men-
tal state conditions. The use of a logic-like notation suggests that the formal
semantics of the modal logic used in (Shoham 1993, Shoham 1991) should fill in

114 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

this gap. However, the logic does not provide an appropriate account. In partic-
ular, the parameter mechanism and scope of free variables in the programming
language is not explained by the logic.

Our semantics of mental state conditions is directly derived from the mental
state of an agent as defined in definition 7.4.1. Although we cannot be sure that
this semantics fully corresponds to that of the intended semantics, it probably
provides a good approximation and completes the specification of the semantics
for the language. Moreover, it is a precise semantics which can be evaluated
on its merits and deficiencies. The semantics of beliefs is derived from the
semantics of first order logic; we use = to denote the usual consequence relation
of first order logic. To specify a parameter mechanism for AGENTO that is used
to compute bindings for free variables, we use the notion of a substitution. A
substitution is a finite set of pairs (also called bindings) of variable-term pairs
(for a more explicit and formal definition, see chapter 3).

Definition 7.4.2 (semantics of mental state conditions)
Let 6 be a substitution. A mental state condition ¢ = (LT,L~,CT,C7) is
satisfied in a mental state M = (II, o) relative to 6, notation: M = cb, if:

e for each ¢ € L*, we have that o = ¢,
e for each a € CT, we have that ad € II,
e for all ¢ € L™ and all substitutions v we have that o [~ ¢v, and

e for all @ € C~ and all substitutions v we have that a7y ¢ II.

Thus, a mental state condition is satisfied if (i) it is possible to instantiate
the free variables in L1 and CT uniformly such that the agent’s beliefs imply
the literals in LT and the agent’s commitments contain the actions in CT, and
(if) it is not possible to instantiate a literal in L~ or action in C~ such that the
agent respectively believes the instantiated literal or has committed itself to the
instantiated action. Somewhat simplified, a mental state condition is satisfied
if the agent believes LT and does not believe any of the literals in L~, and the
agent is committed to C1 and is not committed to any of the actions in C~.

7.4.3 Executing Commitments

Since the commitments of an agent consist of the actions the agent has selected
for execution, the semantics of commitments is provided by a semantics for
action execution. A semantics for actions is provided relative to the meaning
of the most basic or private actions. These actions define the basic capabilities
of the agent and are assumed to be given. In (Shoham 1993) the meaning of
private actions is not discussed in great detail. However, a number of remarks
suggest that private actions should be taken as updates on the set of beliefs of
the agent.® This is the view we will take here. For this purpose, we introduce a

50n p. 61 of (Shoham 1993), it is remarked that no distinction is made ”between actions
and facts, and the occurrence of an action will be represented by the corresponding fact

7.4. AN OPERATIONAL SEMANTICS FOR THE CORE OF AGENTO 115

(partial) function T : Pact x p(Lit) — p(Lit) which specifies what type of update
is performed by each private action.® The computation step resulting from
executing a private action then formally is defined by the following transition
rule.

Definition 7.4.3 (private actions)
Let a be a private action.

T(a,0) =0’
{...,a,...},0) — {...}, 0"
A conditional action (e¢1,...,¢, : a) is executed by testing whether there

are bindings for one of the conditions ¢; such that it is satisfied in the current
mental state of the agent and, if the test succeeds, by committing to the ac-
tion a instantiated with the computed bindings. Variables in the mental state
condition thus retrieve data from the belief base and current commitments by
means of pattern-matching. The values retrieved are recorded in a substitution
6 and used to instantiate the action a. If the test fails, either the conditional
action can be removed from the commitments or not. We have chosen to re-
tain the conditional action as a commitment. Note that the transition rule for
conditional actions is specified at the agent level (cf. chapter 3), as are all other
transition rules for AGENTO. The semantics for conditional actions must be
specified at the agent level because the condition of such actions must be eval-
uated relative to the complete current mental state of the agent. Thus, for the
execution of a conditional action the context of execution, i.e. the entire mental
state of the agent, is required.

Definition 7.4.4 (conditional actions)
Let 6 be a substitution and I ={...,(c1,...,¢x : @),...}.

II,o |= ¢;8 for some ¢
{....(c1;--5¢en:0),...} o) — {{...,a0,...},0)

A refrain action da removes actions of the form a from the set of commit-
ments. All possible instantiations of ¢ are removed from the current commit-
ments. In this way, it prevents the execution of these actions. It is not clear
from (Shoham 1993) if and when a refrain action itself is removed from the set of
commitments. We have chosen to retain the refrain action itself after executing
it, since this type of action is probably most often used for safety reasons. l.e.,
for example, to prevent destructive behaviour or to prevent certain undesirable
effects of the action which is to be refrained from.”

holding.” On p. 76 we are explained that the belief database may be updated ”as a result of
taking a private action”.

6We assume that the transition function does not introduce any free variables into the
belief base of an agent in compliance with our previous constraint on belief bases.

"We think that a refrain action makes more sense in a multi-agent setting, where requests
from other agents to refrain from a particular action could be received. In the single agent
setting, the conditions specifying the circumstances in which an agent should refrain from an
action could probably just as well be explicitly listed in the condition part concerning the
action in the list of capabilities in the program.

116 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

Definition 7.4.5 (refrain actions)
Let 8 be a substitution.

da,ad €11
(I, o) — (IT\ {ab},0)

7.4.4 Applying Commitment Rules

A commitment rule C*,C~ —~ LT, L™ | a in AGENTO is used to make new
commitments. A commitment rule does not remove old commitments, it only
introduces new ones. It is possible to make a new commitment if the mental
state condition (L*, L™, CT, C™) is satisfied in the current mental state.

A unique feature of AGENTO is that all applicable instances of a commit-
ment rule are fired. Thus, a new commitment is made for every set of bindings
for the free variables in the mental state condition of the rule which can be
derived from the current belief base and commitments of the agent.

Formally, a rule fires for each substitution that satisfies the mental state
condition of the rule in the current mental state. This also is an important
difference between the meaning of conditional actions and commitment rules,
besides the fact that rules are never removed from the agent program. As before,
we use Free(e) for the set of all (free) variables in e and dom(6) for the variables
in the domain of substitution 6.

Definition 7.4.6 (rule application)
Let © be the set of all substitutions 6 such that II,o = c¢f and dom(f) =
Free(L1) U Free(C™T), where ¢ = (L*,L—,CT,C™).

{M,o0) — (LU {a0 | 6 € B, 0)

if Ct,C~ « L*,L™ | ais a commitment rules of the agent.

7.5 Decision-Making in AGENTO,
AgentSpeak(L) and 3APL

One of the basic differences between a number of agent languages resides in
their control structure. The main purpose of a control structure for an agent
language is to specify which commitments, intentions or plans to deal with first
and which rules to apply during the execution of an agent program. The strategy
for executing commitments and applying rules in AGENTO, is to execute all
executable commitments and apply all applicable rules in every cycle of the
control loop of the interpreter.

The main control loop in the AGENTO interpreter executes two consecutive
phases:

1. in the first phase, update the commitments (the commitment rules of the
agent program are used in this phase),

7.5. DECISION-MAKING IN AGENTO0, AGENTSPEAK(L) AND 3APL 117

2. in the second phase, ezecute commitments made previously (this phase is
independent from the agent program).

The update phase in the control loop again consists of two distinct steps. On
the one hand, new commitments are added by firing the applicable commitment
rules of the agent program, and, on the other hand, the feasibility of the agent’s
commitments is checked. The test to determine whether or not a commitment
is feasible consists of checking a condition on the mental state to see whether or
not the agent believes that it is capable of executing the commitment. In case a
commitment is no longer considered feasible, the commitment is removed. The
order imposed on these two steps in the AGENTO interpreter is not discussed
in (Shoham 1993).

In the execution phase, i.e. the second phase in the loop above, as many
commitments as possible are executed by the AGENTO interpreter. Since the
actions that are executed are quite simple actions we suppose that each of these
actions is executed completely. This remark applies in particular to conditional
actions, which are executed by first performing a test and in case the test suc-
ceeds executing the action part.

In AGENTO there are no operators for constructing complex actions. For
example, sequential composition or recursive structures like procedures or plan
rules are absent in AGENTO. This lack of constructs for programming control
flow and abstraction is one of the things which suggests that AGENTO supports
a bottom-up approach. By a bottom-up approach we mean here that in contrast
with a top-down approach the agent does not decide what to do next by fixing a
high-level goal and computing plans, but decides what to do next by looking only
at the circumstances the agent finds itself in. This lack of goal-driven behaviour
of agents has been one of the reasons to design the successor language PLACA
with such features in (Thomas 1993). PLACA is similar to AGENTO0, but it
allows planning by means of a plan library.

Another feature which also suggests AGENTO supports a bottom-up ap-
proach is the type of rules allowed to program an agent. The rules to program
agents are condition-action rules. We mean by this that the rules do not modify
any existing (high-level) goals of the agent by substituting plans for achieving
them, but just add new commitments to the set of commitments if the con-
ditions of a rule are satisfied. In this sense we could say that a language like
AGENTO is rule-driven, while languages like AgentSpeak(L) (Rao 19964) and
3APL are goal-driven and use a top-down approach which refines high-level goals
into plans of action.

With the bottom-up and top-down approach two different styles of decision-
making can be associated. These different styles of decision-making give rise
to two different styles of control loops for interpreters for agent programs. The
different styles of decision-making can be explained by introducing two distinct
practical syllogisms for decision-making; one corresponding to goal-driven inter-
preters and one corresponding to rule-driven interpreters:

118 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

Practical Syllogism corresponding to the Goal-Driven Approach:
If (1) the agent intends to achieve a goal g, and (2) believes that g will
not be achieved unless the plan p will be executed, then (Concl) the agent
intends to execute plan p.®

Practical Syllogism corresponding to the Rule-Driven Approach:
If (1) the agent believes it is in situation S, (2) the agent already has made
commitments II concerning a set of actions, and (3) given these conditions
it is advantageous to perform a, then (Concl) the agent should commit to
perform action a.

An explanation of the goal-driven syllogism is to view it as a reasoning
scheme which may be used by the agent to achieve a goal by means of some
plan. The rule-driven syllogism is best explained as a reasoning scheme to
guarantee commitment to all actions of a particular form. Thus, the first might
profitably be used to infer a possible means to achieve a goal, while the second
is more suited to be used as a means to infer the necessity to perform an action,
i.e. to guarantee that some actions are performed in certain circumstances. The
two approaches thus are dual approaches. This duality is related to the duality
of the possibility and necessity operators in modal logic. For this reason, it
is interesting to note that in (Shoham 1993) the concept of obligation is taken
as basic instead of that of motivation. In (Shoham 1993) Shoham actually
somewhat overstates, we think, the contrast between the two different modes of
decision making. According to him, the decision making in AGENTO0 “reflects
absolutely no motivation of the agent, and merely describes the actions to which
the agent is obligated.” (p. 67) The tools for programming an agent in AGENTO0
on the one hand, and AgentSpeak(L) and 3APL on the other hand, thus are
derived from two different perspectives on decision-making.

7.6 Conclusion

By abstracting from a number of features of AGENTO0, we have been able to
construct an operational semantics for what we called the single agent core of
AGENT0. This core includes beliefs, capabilities, three types of action, com-
mitments, and commitment rules. Time and communication are not included
in the single agent core. The benefits of a formal semantics in general and for
AGENTO in particular is that it provides a precise specification for an imple-
mentation of the language. The formal semantics also is an improvement over
the original, informal specification presented in (Shoham 1993) and a number
of gaps were identified during the construction of this semantics.

The formal semantics allows for a formal comparison, and thereby clarifies a
number of differences between rule-based agent languages (cf. for a more exten-
sive discussion Hindriks et al. (1999b)). The basic features of AGENTO are very

8Tt is probably advantageous for the agent to add some conditions which state that the
plan should not interfere too much with other goals of the agent. For simplicity, we have not
included such conditions.

7.6. CONCLUSION 119

similar to those of 3APL. Capabilities correspond to basic actions, beliefs in
both languages are derived from a first order language, 3APL incorporates the
same type of actions except for the refrain action, and commitments in AGENTO
correspond to simple goals in BAPL. AGENTQO lacks a number of programming
constructs for composing sequential, choice, and parallel goals. The main dif-
ference, however, stems from the different types of rules used in both languages.
Whereas in AGENTO it is possible to fire a rule in case a commitment is not
present, the application of a rule in 3APL cannot be conditioned on the absence
of a goal. In 3APL, however, it is possible to arbitrarily modify or drop goals,
whereas in AGENTO rules only can be used to add new commitments.

We believe that the specification of a formal semantics for AGENTO has
clarified the meaning and use of the commitment rules from AGENTO. The rules
of an agent language determine to a large extent the type of decision-making
associated with agents. Two types of decision-making were distinguished. In
AGENTO0, a bottom-up approach is used and a decision what action to do next
(a new commitment) is based on the current situation the agent is in. A top-
down approach is used in AgentSpeak(L) and 3APL in which a plan for action
is selected to achieve a high-level goal of the agent. Accordingly, AGENTO
can be characterised as rule-driven, while AgentSpeak(L) and 3APL can be
characterised as goal-driven.

AGENTO has a number of obvious limitations. For this reason, a successor
language called PLACA has been designed (Thomas 1993). In particular, the
language PLACA extends AGENTO agents with planning capabilities similar
to plan rules in 3APL. The approach that is used for PLACA is very similar to
that of AGENTO. Again, a modal logic is designed to define a number of agent
concepts and a programming language with similar, but not quite the same,
concepts is proposed. The set of concepts incorporated into PLACA is larger
than that of AGENTO and therefore the language is also more complicated. In
fact, one could argue that the simplicity of agent-oriented programming that is
obtained by using a minimal set of agent concepts is lost in PLACA. Moreover,
since PLACA is quite similar to AGENTO and its most prominent contribution
is the addition of planning capabilities which are also present in 3APL, we do
not discuss PLACA in detail here.

120 CHAPTER 7. AN OPERATIONAL SEMANTICS FOR AGENTO

CHAPTER 8

Expressive Power of Agent
Languages

The transition style semantics that we have been using throughout this thesis
provides a basis for a formal comparison of agent languages. The operational
semantics associated with an agent defines the potential behaviour of that agent.
The semantics thus allows for a comparison of the behaviour of two agents.
Formally, the potential behaviour of an agent is defined by a set of computations.

Presented with a formal definition of the behaviour of agents by means of
computations, we need to consider when the behaviour of two agents is identi-
fied. We may not want to take all aspects of the computational behaviour into
account and abstract from a number of features. It is thus important to specify
which aspects of the agent’s behaviour are considered, which naturally leads to
the concept of observation.

By means of the concepts of a computation and that of an observation a
formal definition of two agents that simulate each other is provided. An agent
language defines a set of possible agents A. The comparison of two agent lan-
guages thus involves a comparison of their respective sets of agents. The basic
idea is that the comparison of one set of agents 4 with another set of agents
B consists of two steps: (i) for each agent A € A find a corresponding agent
B € B, and (ii) show that the behaviour of agent A can be simulated by the
behaviour of agent B. Because in principle any Turing-complete language can
simulate another Turing-complete programming language, we need to formu-
late some additional requirements to use a simulation approach for comparing
the ezxpressive power of two agent languages. Intuitively, agent B should be
structure-preserving and generate the same type of behaviour in a similar way.

121

122 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

8.1 Computations and Observables

Agents or agent programs are the entities of a programming language that
are executed, and that give rise to computations. A transition style semantics
defines a transition relation — which specifies the computation steps that an
agent can perform. A transition system thus defines in a natural way the set of
computations that are associated with an agent.

Definition 8.1.1 (computation)
A computation of an agent A is a finite or infinite sequence

AOaAla-"aAiaAi-i-la"'

such that Ao = A and for all i: A; — A;11. A transition A — A’ is called a
computation step (of agent A).

The set of all computations associated with agent A is called the operational
meaning of agent A. This set specifies what an agent can do, or, in other words,
its behaviour. A transition relation may be labelled to distinguish different
types of computation steps. For example, a transition due to the execution of
an action ¢ may be labelled with this action, which is written as A %+ A’.

Given the above definition of a computation we can define various notions of
observables. For example, we may want to observe the sequence of belief bases
extracted from a computation, or the sequence of basic actions corresponding to
single transitions in a computation, for example for planning (cf. Giacomo et al.
(1997)). Belief bases and actions are different types of observables. A belief base
is part of the internal state of the agent, whereas an action that is observed to
have happened reveals the type of computation step that has been performed.
Belief bases are extracted from the agents in a computation and are state-based
observables. Actions or other types of computation steps that are distinguished
are extracted from computation steps and are action-based observables.

We will assume that action-based observables are always given by means of
labels that are associated with transitions. To extract state-based observables
from a computation, we will assume that an observation function O : A — Q -
where A is a set of agents and 2 is a set of state-based observables - has been
given. O defines which parts of the state of an agent are visible to an external
observer. Note in particular that the function O allows an observer to observe
changes in the agent’s state during a computation.

8.2 Bisimulating Agents

The comparison of two agents is based on a notion of simulation. Intuitively,
two agents can simulate each other if they can generate the same behaviour.
Simulation is defined in terms of computations and the concept of observation.
An agent A is able to simulate a second agent B if every computation of agent
B matches with a computation of agent A, and vice versa. To be somewhat

8.2. BISIMULATING AGENTS 123

more precise, two agents A and B are similar if for every computation of agent
A there exists a matching computation of agent B, and vice versa. For two
computations to match, the individual computation steps of the computations
are compared. The basic idea is that two agents that can simulate each other
should be able at each moment during a computation to generate a similar
computation step. Computation steps are similar if the observables of the steps
are identical. The idea to identify agents if they are able to simulate each
other’s computation steps is called (strong) bisimulation in the literature (cf.
Park (1980) and Milner (1989)). A bisimulation is a binary relation between
agents.

Definition 8.2.1 (strong bisimulation)
Let A and B be two sets of agents. A binary relation R C A x B over agents is
a strong bisimulation if (4, B) € R implies that,

(i) Whenever A Ny then, for some B’, B SN B', and (4',B') € R,
(ii) Whenever B B then, for some A, A N A', and (A',B') € R, and
(iii) O(4) = O(B).

Observe that a bisimulation is an equivalence relation on agents. The criteria
for identifying two agents are derived from the observation function O (which
defines the state-based observables) and the type of computation steps that are
distinguished by labels (which define the action-based observables). By either
mapping all agents onto a single value (i.e. O(A4) = L for all agents A) or by
not distinguishing computation steps by means of labels the state-based and
action-based observables can be trivialised. However, even if both state-based
and action-based observables are trivial, a bisimulation still requires a potential
for behaviour. That is, if agents A and B bisimulate, each of them must be able
to perform a computation step if the other is able to do so.

The concept of bisimulation is the basic tool that we will use for comparing
agents and agent languages. The notion of strong bisimulation, however, im-
poses a very strong condition for the identification of two agents. A relation on
agents is a strong bisimulation if and only if each computation step of an agent
A that is bisimular to an agent B is matched by a computation step of agent B,
and vice versa. This may be asking too much if we want to compare different
agent languages because it leaves very little room for differences.

From the point of view of comparing programming languages, it may not
be relevant to distinguish all the peculiar details of one language with those of
the other. Some mechanisms present in a language may be considered ‘imple-
mentation details’ from the perspective of another language. For example, the
use of a stack of plans in AgentSpeak(L) from the perspective of 3APL provides
too much detail, whereas in the semantics of ConGolog the details of variable
renaming which are present in the semantics of 3APL are hidden.

To relax the conditions imposed by strong bisimulation, we might argue that
some computation steps A — A’ are not observable. Several criteria may be

124 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

used to specify which computation steps are not observable. However, there is
one type of computation step that in particular comes to mind, namely compu-
tation steps A — A’ such that O(A) = O(A’). The idea is that computation
steps which cannot be distinguished by an external observer need not be simu-
lated. From the point of view of the simulation, these steps can be considered
‘implementation details’ that are hidden from the observer. We call such ‘hid-
den’ steps silent steps.

The idea is to allow agents to perform silent steps which are not necessarily
matched by computation steps of the other agent. As a consequence, an ob-
servable computation step of one agent may be matched by another agent by
performing zero or more silent steps possibly combined with a single non-silent
step of the other agent. The concept of simulation that we obtain in this way
by relaxing the requirement that every computation step needs to be simulated
is called weak bisimulation.

To formalise this idea, a special label ¢ is introduced. A transition is singled
out as a silent step in case the label ¢ is associated with the transition and
considered a non-silent step otherwise. (For the moment, we assume that no
other labels are used.) A new transition relation = is derived from the original
transition relation — that abstracts from such silent steps. A step 4 = A’
may involve a number of silent steps and possibly a non-silent step.

Definition 8.2.2 (abstracting from silent steps)

Let — be a transition relation on agents from A, i be a label that is associated
with a transition to mark it as a silent step, and —* denote the transitive
closure of a relation —. Then the transition relation = is defined by:

A = A" iff there are agents A1, Ay € A such that:
A 5" A1, Al — Ay or A; = Ay, and Ay —" A’

Observe that — C=>. The notion of weak bisimulation is based on the idea
that a single computation step of one agent may be simulated by the derived
step relation =. That is, a single computation step A — A’ may be matched
by an agent B by performing a step B = B’'. The step B = B’ may involve
multiple silent steps as well as one non-silent step.

Definition 8.2.3 (weak bisimulation)
Let A and B be two sets of agents. A binary relation R C A x B over agents is
a weak bisimulation if (A, B) € R implies,

(i) Whenever A — A’ then, for some B', B = B’, and (4', B') € R,
(ii) Whenever B — B’ then, for some A', A = A', and (A’,B') € R, and
(iii) O(4) = O(B).

The definition 8.2.1 of strong bisimulation and the definition 8.2.3 of weak
bisimulation look very similar. In fact, every strong bisimulation is a weak

8.3. TRANSLATION BISIMULATION 125

bisimulation. A weak bisimulation, however, is not always a strong bisimulation
because of the possibility that silent steps may have been used to simulate non-
silent steps. Note that in case O(A) = O(A') is used as a criteria to single out
computation steps A — A’ as silent steps, a non-silent step of one agent can
only be simulated by another agent if it performs at least one non-silent step
itself.

It is not difficult to extend the definition of weak bisimulation and also allow
other labels than ¢ to be associated with transitions. The extension involves
associating labels with the step relation = from definition 8.2.2. We stipulate
that a label ¢ is associated with a step A = A’ if the step only involves silent

steps (or no steps at all), written as A R ; if a step A = A’ involves a
non-silent step labelled [, then this label is associated with the step, written as

A= A'. The changes to definition 8.2.3 then are straightforward.

8.3 Translation Bisimulation

So far, we have been discussing the comparison of two sets of agents, and
have paid little attention to the programming languages used to construct these
agents. We are interested in comparing different agent languages and features
of these languages, however. In particular, we would like to study the expressive
power of agent languages. For this purpose, it is not good enough to construct
a bisimulation for some set of agents. To compare two languages, we need to
systematically associate agents from one language with that of another. That
is, if an agent language defines a set of agents A, for each of these agents we
need to find a corresponding agent in the other language. The concept of a
translation bisimulation is developed here to formalise this idea.

Our aim is to be able to compare the expressive power of one language with
that of another. Informally, this means that we are interested in finding out
whether or not every agent that can be programmed in a given language can be
translated into an agent of the second language that ‘can do the same things’.
The first language is called the source language, and the second language in
which those of the first are translated is called the target language. In the
sequel, we assume that the source language defines a set of agents 4 and the
target language defines a set of agents B.

For our purposes, it is thus important to require that every agent from the
source language is translated into an agent of the target language. A method
for mapping agents from A to agents from B is required to translate between
the source and the target language. Such a method systematically associates
an agent from B with every agent from A and is called a translation function.
A translation function 7 may define a weak bisimulation R, i.e. 7 = R. In
that case, we obtain a special case of weak bisimulation that is also called a
p-morphism in the literature (cf. Segerberg (1970)). A p-morphism is a (weak)
bisimulation such that the bisimulation relation is a function. We will call a
translation function that is a p-morphism a translation bisimulation.

126 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

Because we allow the source and the target language to be different lan-
guages, we need to take into account a number of differences. First, we need
a translation function which translates agent programs from the source to the
target language. Secondly, we must keep in mind that the sets of observables
may be defined differently for the source and the target language. To compen-
sate for this second difference, we introduce a mapping that we call a decoder.
A decoder maps observables from the target language back onto observables of
the source language. A decoder thus is a function § : Qp — Q4 where Q4 and
Qp are the observables from the source and target language. In case we need
to decode labels from the target language, a decoder may also be extended to
action-based observables. The reason that a decoder decodes observables from
the target language into the source language is that we assume that the target
language is used to simulate the source language, but the source language does
not have to simulate the target language.

Definition 8.3.1 (translation bisimulation)
Let the following be given:

e — 4, —p are two transition relations defined on the sets of agents A
and B, respectively,

e Op: A— Q4 and Op : B — Qp are two functions that define the sets of
observables associated with agents from A and B, respectively,

e 7: A — Bis a total mapping from A to B,
e §: Q05 — Q4 is a decoder,

e if it exists, the distinction between silent and non-silent steps is clearly
formulated for — 4 and — 3.

Then we have that 7 is a translation bisimulation if, for every A € A, B = 7(4)
implies,

e Whenever A —» 4 A', then B =5 B’ such that B' = 7(4),

e Whenever B — g B’', then for some A, A = 4 A', such that B' = 7(4’),
and

* 5(05(B)) = Oa(4).

The concept of a translation bisimulation is illustrated in figure 8.1. £
denotes the source language and L' denotes the target language in the figure.
Note that, although this is not depicted in the figure, the agents may perform
more than one step to simulate a step of the other agent on condition that
these extra steps are silent steps. In the figure, this means that the arrows
are used both to depict a — as well as a = step. A translation function 7
maps an agent A € A from the source language £ to an agent 7(4) € B from
the target language £'. For each agent A € A a computation step A — 4 A’

8.3. TRANSLATION BISIMULATION 127

L A A
—_—————————————————>
T ol |t
. ,,,,,,,
T(A) T(A")

Figure 8.1: Translation Bisimulation

must be matched by a corresponding computation 7(4) =5 7(A'). This step
should have the same observable effects. And vice versa, a step of 7(4) must
be matched by agent A.

The first condition in definition 8.3.1 states that a computation step of the
source agent A is matched by a corresponding computation from the target
agent 7(A). The third condition requires that it is possible to extract the same
observable information from the target agent as from the source agent. This
condition excludes a trivial choice of observables Q2 for the target language, i.e.
Qp = {L1}. Together, these conditions guarantee that the behaviour produced
by the source agent A can be simulated by the target agent 7(A).

The source agent, however, must also be able to simulate the behaviour of
the target agent. Otherwise, the two agents cannot be considered equivalent. In
other words, we also have to prove that all possible behaviour of the target agent
7(A) can be accounted for on the basis of the behaviour of agent A. Agent 7(A)
should generate the same behaviour as agent A, but is not allowed to generate
alternative computations. If such extra computations would be allowed, a target
agent for simulating a source agent could be selected that generates as much
computations as possible, which would trivialise the simulation result. Formally,
these requirements are captured by the second condition in definition 8.3.1. In
short, it states that every computation step of the target agent 7(A) also must
be simulated by the source agent A.

A translation bisimulation offers two features for dealing with differences be-
tween the source and the target language. First, a translation function may
translate constructs and features of the source language into the constructs and
features of the target language. And secondly, a decoder may be used to de-
code observables of the target language back into those of the source language.
There are no facilities introduced yet to deal with different syntactic mechanisms
that transform an agent during a computation. (A translation function maps a
source agent onto a ‘canonical’ target agent, and cannot be used to compensate
for such mechanisms.) For example, a language may use a renaming scheme
for variables that is not present in another language (cf. chapter 10 which com-
pares 3APL with ConGolog). In general, such syntactic mechanisms give rise
to slightly different agents. From the point of view of an external observer,

128 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

however, these agents cannot be distinguished and one would like to abstract
from these minor syntactic differences.

Traditionally, entities that are identical except for minor syntactic differ-
ences, have been identified by means of a process called a-conversion. It is this
notion that we will use here too. The idea is to allow an agent to perform so-
called a-conversion steps to simulate a step of another agent. The point is that
a translation function may map a source agent onto a canonical target agent
that might be slightly different with respect to minor syntactic features from
the target agent that is needed in the simulation step. To compensate for such
differences, then, a-conversion steps may be performed during the simulation.

An a-conversion step is written like A — A’. a-conversion steps need not,
however, be computation steps defined by the transition relation —. For the
purpose of constructing a translation bisimulation, these steps may be added.
Of course, we cannot arbitrarily introduce a-conversion steps. Whether or not
a step may be used as an a-conversion step depends on the context. In par-
ticular, it depends on the observation function O that is used. Minimally, an
a-conversion step A —— A’should satisfy the following condition: A and A’
are bisimilar with respect to the observation function O, where O is given by
the context of the translation bisimulation that is constructed. Thus apart
from silent steps, in the context of a translation bisimulation we also allow that
a-conversion steps are performed in an =-step.

8.4 Expressive Power

The concept of a translation bisimulation is particularly useful for comparing
the expressive power of agent programming languages. Translation bisimulation
specifies a number of conditions that must be satisfied for one language to have
at least the same expressive power as another language. To establish that a
language £ can express everything that another language £’ can express, we
must construct a translation bisimulation that relates all agents in the source
language L' to some suitable set of agents from the target language £'. This
shows that the target language can simulate arbitrary agents from the source
language.

However, the notion of translation bisimulation is still not strong enough to
define expressive power, since programming languages that are Turing-complete
can simulate any other Turing-complete programming language. The ingredient
that is still missing from the definition of translation bisimulation is the notion
of conceptual structure. Different programming languages incorporate different
concepts. In fact, this is the sole reason for the existence of so many different
languages: A programming language may not offer more computational power,
but it may provide a different set of tools (concepts) to solve a programming
problem. Intuitively, a translation function 7 thus should also preserve the global
structure of an agent if we want to compare the expressive power of programming
languages (cf. Felleisen (1990)).

It is not so easy to formalise this intuitive constraint on a translation bisim-

8.4. EXPRESSIVE POWER 129

ulation. The formalisation of the constraint depends on the definition of agents
in the source and target language. If we assume that both languages are defined
inductively, the preservation of structure can be captured by the requirement
that both the translation function 7 and the decoder & are compositional.

Somewhat more formally, we will call a translation compositional if every
operator op of the source language is translated into a context Clzi, ..., Z,)
(where n is the arity of op) of the target language such that an expression
op(ei,...,ey,) is translated into C[r(e1),...,7(es)]. In order to account for
the complex structure of an agent (that is, its various components compris-
ing its beliefs, goals, intentions, etc.) we will assume that an agent is a tuple
A= (F,...,E,), where each of the F; is a subset of the expressions of a pro-
gramming language. A mapping from agents (£, ..., E,) written in the source
language to agents (Fi,..., Fy,) in the target language (n # m is allowed) is
then induced by the translation function 7 and a pre-specified selection criterion
that determines for each expression e € E; a corresponding target component
F; such that 7(e) € F;. Similarly, compositionality of § can be formalised.

Definition 8.4.1 (embedding A into B)

Let O4: A— Q4 and Op : B — Qp be two observation functions for the set of
agents A from £ and the set of agents B from L'.

Then we say that £’ has at least the same expressive power as L if there is a
mapping 7 : A — B and a mapping § : Qp — Q4 which satisfy the following
conditions:

E1 7 and § are compositional,

E2 7 is a translation bisimulation.

If a language £’ has at least the same expressive power as another language
L, we also write £ < L'.

Corollary 8.4.2 (expressive power is a transitive relation)

Let £, L', L" be programming languages.

Then we have that if £ < £’ and £’ < £”, then also £ < £"”. That is, < is
transitive.

Proof: Informally, the corollary states that if £’ has at least the expressive
power of £, and £" has at least the expressive power of £, then £" has at
least the expressive power of L. The result follows from the fact that the com-
position of two compositional translation functions again is compositional and
the fact that composing two translation bisimulations again yields a translation
bisimulation. O

Remark 8.4.3 (interacting agent components)

The translation of the different components E; that make up an agent A =
(Ey,...,E,) is rather subtle. The most simple construction, of course, is to
define a translation function 7 that maps the components E; of agent A to

130 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

different components of the target agent 7(A4). Such translation schemes still
would allow for mapping expressions from two components E; and E; (i # j)
to a single target component 7(E;) U 7(Ej;), or for mapping expressions from a
single component F; to different target components.

Simple translation schemes such as those of the previous paragraph, however,
cannot account for possible semantic interactions between agent components.
This would be the case if the meaning of an expression in one agent component
may be altered by the presence of an expression in another component. This
phenomenon may arise in 3APL agents because of the presence of practical
reasoning rules. For example, the presence of the swap rule X; ¥ « V; X (cf.
chapter 4) changes the meaning of sequential composition.

To be able to deal with such shifts in meaning, it should be possible that the
translation of expressions in one agent component into another language depend
on the contents of a second component. It thus should be possible to parame-
terise the translation function 7 with components. That is, the translation of a
component E; by 7 may be dependent on another component E;, which can be
expressed by 7(E;)(E;).

For example, a more complex translation scheme allows the translation
of a 3APL agent (o,{a; b},{X; Y « Y; X}) into another 3APL agent
<r(o}),r(){x; Y « ¥; XH({a; b)), 7({X; ¥ « ¥; X}) = (o,{a; b+
b; a}, @).

A particularly interesting issue in this context concerns the expressive power
of individual constructs in a single language. More specifically, it is interesting
to know whether or not a programming construct adds expressive power to a
language. In case it does not, the programming construct might be considered
redundant and could be eliminated from the language. For example, it is well-
known that in imperative programming the repeat ... until ... construct can
be eliminated if both the while ... do ... construct and sequential composition
are available in the language.

The fact that a programming construct can be eliminated from a language
means that a subset of that language has at least the same expressive power.
The formal definition of eliminability of an operator op is given next.

Definition 8.4.4 (eliminability)

Let O4: A — Q4 and Op : B — Qp be two observation functions for the set
of agents A and the set of agents B. We assume that agents from 4 and B are
written in the same language L.

Then we say that a programming operator op in the language £ is eliminable
if there is a mapping 7 : A — B and a mapping § : Q5 — Q4 which satisfy the
following conditions:

F1 7 and § are compositional,
F2 7 is a translation bisimulation, and

F3 B C A, such that the operator op does not occur in any of the agents in B.

8.5. CONCLUSION 131

The definition 8.4.4 of eliminability is very similar to that of definition 8.4.1.
The two first conditions F1 and F2 are identical to E1 and E2 of definition 8.4.1.
The only difference is that the target language is required to be a subset of the
source language by condition F3. Although eliminability requires the syntax of
the target language to be a subset of the source language, definition 8.4.4 allows
that there are small differences in the meaning of the same (syntactic) operators
in the source and target language. An illustration of these changes in meaning
between source and target language will be presented in the next chapter where
we show that events are eliminable from AgentSpeak(L).

8.5 Conclusion

In this chapter, we developed a method for the comparison of agent languages.
In particular, the method supports a comparison of the relative expressive power
of two languages. The method is based on the comparison of the (observable)
behaviour of agents. The behaviour of an agent is supposed to be formalised by
means of an operational semantics that defines the possible computations that
an agent can engage in. Based on the concepts of a computation and that of an
observation, several notions of bisimulation were introduced.

The most important concept developed in this chapter is that of a transla-
tion bisimulation. A translation bisimulation systematically associates agents
from a so-called target language with every agent from a source language. The
agents from the source and target language that are related by a translation
bisimulation are required to generate the same behaviour.

For the comparison of expressive power, translation functions are required
to preserve the global structure of agents. Formally, a translation function
should be compositional. The formal definition of the relative expressive power
of two programming languages is used in the next two chapters to compare
AgentSpeak(L) and ConGolog with 3APL.

132 CHAPTER 8. EXPRESSIVE POWER OF AGENT LANGUAGES

CHAPTER 9

An Embedding of
AgentSpeak(L) in 3APL

The language AgentSpeak(L) (Rao 1996a) is similar in many respects to 3APL.
Nevertheless, there are a number of conceptual differences between both agent
languages. It is therefore interesting to compare these languages to obtain
a better insight into what type of agents both languages define and into the
terminology that is used to define both languages. In particular, it is useful to
formally compare both languages and provide a detailed comparison that allows
us to evaluate the differences in a rigorous way.

To this end, we use the bisimulation technique that has been studied in
the previous chapter. We construct a formal embedding of the agent language
AgentSpeak(L) in 3APL. This shows that 3APL has at least the same expressive
power as AgentSpeak(L). The comparison yields some new insights into the
operation of the agents in both languages and reveals some formal relations
between concepts used in 3APL and those used in AgentSpeak(L). Moreover,
the results proven in this chapter show that it is possible to substantially simplify
AgentSpeak(L).

9.1 Overview of AgentSpeak(L)

We first provide a short and informal overview of AgentSpeak(L) and then
formally introduce the language. The languages AgentSpeak(L) and 3APL share
many features. One of the more important of these shared features is that both
languages are rule-based. In AgentSpeak(L) the rules embody the know-how of
the agent, and are used for planning. The informal reading of these rules is: If
an agent wants to achieve goal G and believes that situation S is the case, then
plan P might be the right thing to do. Recall that the same type of rules for
planning is available in 3APL (cf. chapter 2).

133

134 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

An agent of the programming language AgentSpeak(L) consists of beliefs,
goals, plan rules, intentions, and events which make up its mental state. A set
of actions for changing its environment is associated with an agent. Actions
are executed as a result of executing adopted plans. Adopted plans are called
intentions in AgentSpeak(L).

The beliefs of an AgentSpeak(L) agent represent the situation the agent
thinks it is in and are similarly defined as those of 3APL and AGENT(. In
AgentSpeak(L) two types of goals are distinguished: achievement goals and test
goals. Both types of goals are similar to those of 3APL. A test goal can be used
to inspect the beliefs of the agent. An achievement goal is a state of affairs
desired by the agent. The means to achieve such a state are provided by plan
rules. An attempt to accomplish an achievement goal is initiated by a search in
the plan library for a plan rule that provides the appropriate means to succeed.
If an appropriate plan rule is available, the agent may select the plan and start
executing the plan as specified by the rule.

Plans are hierarchically structured. A plan may - among other things -
consist of achievement goals which represent a high-level goal that needs to be
achieved to execute the plan. To achieve these achievement goals, an agent
needs to find appropriate plans for these goals in turn. A plan that is adopted
to achieve an achievement goal is put on a stack of plans. Such a stack of plans
is called an intention in AgentSpeak(L). The structure of an intention (i.e. a
stack of plans) is related to the occurrences of achievement goals in the plans
of which the intention consists. Each entry of a stack of plans is adopted as a
plan to achieve the first occurrence of an achievement goal in the plan one entry
lower in the stack, except, of course, for the bottom element.

An agent acts on the basis of its intentions. An agent first executes the plan
that is last pushed onto an intention. In case it finishes executing a plan on the
stack, execution continues with the next plan on the stack. A plan may specify
that the agent should perform an action or that the agent should accomplish a
test or achievement goal.

9.2 Outline of the Proof

The claim that 3APL has at least the same expressive power as AgentSpeak(L)
is proven in two steps. Each of these steps deals with a conceptual difference
between AgentSpeak(L) and 3APL. The main conceptual differences between
AgentSpeak(L) and 3APL are the concepts of an event and an intention which
do not have obvious counterparts in 3APL.

In the first step (section 9.3), we show that the concept of an event can be
eliminated from the language AgentSpeak(L) without reducing its expressive
power. To prove this, we first define a new language that is called Agent-
Speak(1). AgentSpeak(1) is a subset of the language AgentSpeak(L) and does
not include events. We show that AgentSpeak(1l) has at least the same ex-
pressive power as AgentSpeak(L). Because AgentSpeak(1) is a proper subset of
AgentSpeak(L) we then can conclude that events in AgentSpeak(L) are elim-

9.3. THE ELIMINABILITY OF EVENTS 135

inable in the formal sense of definition 8.4.4.

In the second step (section 9.4), we show that the concept of an intention
can be simulated by 3APL goals. For this purpose, we define a language called
AgentSpeak(2) and show that this language has at least the same expressive
power as AgentSpeak(1). AgentSpeak(2) is a proper subset of 3APL. 3APL
thus has at least the expressive power of AgentSpeak(2). Since AgentSpeak(2)
has at least the expressive power of AgentSpeak(1l) and AgentSpeak(1) has the
expressive power of AgentSpeak(L), by transitivity it then follows that 3APL
has at least the same expressive power as AgentSpeak(L).

9.3 The Eliminability of Events

In this section, we show that events can be eliminated from AgentSpeak(L).
This is the first step in the proof that AgentSpeak(L) agents can be simu-
lated by 3APL agents. A compositional translation function 7y that translates
AgentSpeak(L) agents to a language called AgentSpeak(1) is constructed. Then
a proof is presented that shows that the function 7; defines a translation bisim-
ulation. It follows that AgentSpeak(1) has at least the same expressive power as
AgentSpeak(L) and, since AgentSpeak(1) is a subset of AgentSpeak(L) which
does not include events, that events are eliminable from AgentSpeak(L).

First, we introduce both the syntax and the semantics of the programming
languages AgentSpeak(L) and AgentSpeak(1), respectively. The definition of
AgentSpeak(L) is based on the description of AgentSpeak(L) in (Rao 1996a).
The syntax of AgentSpeak(L) is copied without changes from (Rao 1996a). The
semantics, however, has been changed to correct for certain omissions. The
second language AgentSpeak(1l) is a proper subset of AgentSpeak(L). One of
the main differences between AgentSpeak(L) and AgentSpeak(1) consists in the
presentation of the operational semantics. Whereas the semantics of Agent-
Speak(L) is defined by a so-called proof system which is introduced below, the
semantics of AgentSpeak(1) is defined by a transition system. Transition sys-
tems were also used to define the semantics of 3APL. Both systems define the
operational semantics of agents and a step relation that specifies what computa-
tion steps an agent can perform. Based upon these two semantics, an embedding
of AgentSpeak(L) in AgentSpeak(1) is constructed.

9.3.1 The Syntax of AgentSpeak(L)

The beliefs and actions of AgentSpeak(L) agents are defined completely anal-
ogous to those of AGENTO agents. AgentSpeak(L) beliefs are identified with
the set of literals of a first order language. AgentSpeak(L) beliefs are the same
as AGENTO beliefs and therefore we refer to definition 7.3.2 that defines terms,
atoms, and literals for AGENTO for a precise definition of these same notions
for AgentSpeak(L). The terminology in (Rao 1996a) is slightly different from
ours. A ground atom is called a base belief and the set of literals are called belief
literals. Similarly, the set of (private) actions as defined in 7.3.3 for AGENTOQ

136 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

is the same as that for AgentSpeak(L). This set is denoted by Act here. Ac-
tions are the basic means for an agent to achieve its goals and any specific set
associated with an agent defines the capabilities of that agent.

Conceptually, a difference is made between goals and intentions. The notion
of a goal in AgentSpeak(L) therefore is somewhat different from the goal concept
in 3APL. In AgentSpeak(L), two different types of goals are distinguished. An
achievement goal ¢ denotes the fact that an agent has a goal to establish a state
of affairs where ¢ is the case. An achievement goal can be part of a larger plan.
The second type of goal is a test goal 7¢ which is used to inspect the belief base
of the agent. Apart from syntactic differences both types of goals correspond
to the same notions in 3APL.

Definition 9.3.1 (test and achievement goals)
The set of AgentSpeak(L) goals Agoal is defined by:

o If ¢ € At, then !¢ € Agoal, called achievement goals,
o If ¢ € At, then ?¢ € Agoal, called test goals.

In (Rao 1996a), four types of so-called triggering events are introduced.
Triggering events are used by AgentSpeak(L) agents to associate plans with
achievement goals and to respond to changes in the agent’s environment. Trig-
gering events have no analogues in 3APL. The idea is that a triggering event
+!¢ deals with the addition of an achievement goal !¢ and a triggering event
—1¢ with the deletion of !¢. Similarly, +7¢ deals with the addition of a belief
¢ and —7¢ with the removal of such a belief. The formal semantics of trigger-
ing events, however, is only specified for the addition of an achievement goal
in (Rao 1996a). The meaning of the other triggering events is less clear, and
therefore we do not consider these in the present chapter. A triggering event
+!¢ is generated when a plan for an achievement goal !¢ has to be found. A
triggering event thus signals the need for an appropriate plan for !¢.

Definition 9.3.2 (triggering events)
The set of triggering events TrigEv is defined by:

e If !¢ € Agoal, then +!¢ € TrigEv.

Plan rules in AgentSpeak(L) provide the means for achieving an achievement
goal and are similar to the same rules in 3APL. The associated plans in these
rules are recipes that code the know-how of the agent. Again, there are some
differences in syntax and terminology with 3APL. A plan rule is of the form
e:byA...ANb, < hy; ...; h,. e must be a triggering event and is called the
head of the plan rule. It indicates for which achievement goal the plan rule
provides a plan. The sequence hy; ...; h, specifies the plan associated with the
rule and is also called the body of the rule. Finally, by A ... A b, is a condition
that specifies in which contexts the plan may be considered. This condition is
called the context of the plan rule. Empty bodies are allowed in (Rao 1996a),
but for simplicity we do not consider them here.

9.3. THE ELIMINABILITY OF EVENTS 137

Definition 9.3.3 (plan rules)
The set of plan rules PlanRule is defined by:

e If e € TrigEv, by, ..., by, are belief literals, and hy, ..., h, € (Agoal UAct),
then e : by A... A b, < hy; ...; h, € PlanRule.

The adoption of plans by an AgentSpeak(L) agent to achieve its goals results
in intentions. AgentSpeak(L) intentions are most similar to 3APL goals. An
intention is a stack of plans. They are used to record which plan was adopted
by an agent to achieve a specific achievement goal. The idea is that a plan in
an intention stack provides the means for an achievement goal that occurs in a
plan one entry below it in the stack (if there is such an entry). Intentions are
executed by agents by executing the actions and acting upon the goals in the
plans on the intention stack.

Definition 9.3.4 (intentions)
The set of intentions Int is defined by:

e If p1,...,p, € PlanRule, then [p11...1p,] € Int.

Note that in fact plan rules are put on a stack instead of plans. But as we
will see below, only the plan - the body of the rule - plays a role of importance.
Therefore, we will continue treating the plan rules in an intention simply as if
they are plans.

The last concept incorporated in AgentSpeak (L) is a so-called event. Events
have no 3APL analogue. An event is a pair that consists of a triggering event
and an intention. The intention component of an event is used for administrative
purposes and indicates which intention triggered the event. The triggering event
component specifies the type of the event.

Definition 9.3.5 (events)
The set of events Event is defined by:

e If e € TrigEv and 4 € Int, then (e, i) € Event.

Events play a role in the construction of intentions. When - during the
execution of an intention - the next thing that an agent has to accomplish is an
achievement goal !¢, a corresponding event is generated. The triggering event
component of the event in that case is of the form +!¢ and the intention i is
the same as the intention that generated the event. The event indicates that
a suitable plan to achieve the goal has to be found. A suitable (instance) of a
plan rule is searched for, and in case such a plan (rule) is found, it is added to
the intention stack i. If the plan has been executed completely, the plan (rule)
is removed again from the intention.

All the ingredients of an AgentSpeak(L) agent have now been introduced.
An AgentSpeak(L) agent is defined by its beliefs, intentions, and plan rules.
During the execution of AgentSpeak(L) agents also a set of events that has
been generated is maintained in the state of the agent. Initially, we require

138 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

that the set of events is empty and that all intentions are of the form [+!true :
true < hy; ...; hy]. These requirements do not restrict the operation of agents
and are quite natural initialisation conditions. The first condition states that
no events have been generated yet when the execution of an agent is started.
The second condition states that an agent may have adopted a number of plans
to act upon initially, but no stack of more than one plan has been created yet.

Definition 9.3.6 (AgentSpeak(L) agents)
An AgentSpeak(L) agent is a tuple (E, B, P, I), where

e F C Event is a set of events,
e B CLitis a set of ground belief literals,
e P C PlanRule is a set of plan rules, and
e] Clntis a set of intentions.

such that (i) E = @, and (ii) all ¢ € I are of the form [+!true : true «
his ... hy).

The definition of AgentSpeak(L) agents that we have given deviates to some
extent from that in (Rao 1996a). First, the effect of action execution in (Rao
19960) is that any action which has been executed is stored in a set in the mental
state of the agent. This set of actions that keeps record of the actions that the
agent executes plays no other role in the operational semantics. The idea,
supposedly, is that actions are executed by an ‘external’ system which is not
specified in the agent semantics. The role played by actions in the operational
semantics of AgentSpeak(L), however, is minimal. As an alternative, we can
use the type of action semantics used for 3APL and define actions as updates
on the belief base of an agent. If the agent needs to keep track of the actions
that it has executed, in an update semantics it can store this information in its
belief base.

Secondly, we have deviated from (Rao 1996a) since we have not included
the three selection functions for selecting events, intentions and plans in the
definition of an agent. These functions are used in (Rao 1996a) to define a
(deterministic) interpreter for the execution of agent programs. They are used
for control aspects which can be viewed as part of a meta layer that determines
what an agent should do in case there are multiple options. Elsewhere (Hindriks
et al. 1999b), we have argued that such features of agent control are better
described at a different level. We think that it is better that such features are
not included in the definition of the operational semantics of an agent language.
Instead, they can be viewed as a feature of an interpreter that implements the
agent language. The selection functions from (Rao 1996a) thus viewed define
part of a control structure for an interpreter for AgentSpeak(L) (cf. also Hindriks
et al. (1999b) and Rao (19964)) that is not considered here.

9.3. THE ELIMINABILITY OF EVENTS 139

9.3.2 Semantics of AgentSpeak(L)

The semantics of AgentSpeak(L) is defined by a somewhat different formalism
than that of a transition system. In our presentation of the semantics of Agent-
Speak(L), we have tried to stay as close as possible to the original presentation
in (Rao 1996a). However, the definition of the semantics has been modified and
extended at several places to correct for certain omissions. At the appropriate
places we will comment on these changes.

The operational semantics of AgentSpeak(L) is defined by a so-called proof
system in (Rao 1996a). Such a proof system is used to derive the possible
computation steps of an agent. Proof systems are quite similar to transition
systems. A proof system for AgentSpeak(L) consists of a set of proof rules that
define a derivability relation F. F is a relation on AgentSpeak(L) configurations.
Such configurations are also called BDI configurations.

Definition 9.3.7 (BDI configuration)
A BDI configuration is a tuple (E, B, I}, where

e F C Event is a set of events,
e B C Litis a set of ground belief literals, and

e] CIntis a set of intentions.

A BDI configuration consists of a set of events, a set of beliefs, and a set of
intentions. Notice that the belief base in a configuration is required to be closed.
A BDI configuration consists of components of an agent that can change during
the execution of that agent. Other components - like the plan rules associated
with an agent - that remain fixed are not included in a configuration.

Each proof rule in a proof system is of the form

(BB D)
(BB I') conditions

Both the premise and the conclusion of a rule are configurations. In contrast,
premises and conclusions in a transition system are transitions. A proof rule
corresponds to a type of computation step.

To provide the semantics of agent execution, in the remainder of this chapter,
we will assume that a fixed set of plan rules P is associated with an agent.
Furthermore, we assume that a function 7 : Act x p(Lit) — p(Lit) that specifies
the update semantics of basic actions is given.

The first proof rule in the proof system for AgentSpeak(L) is a rule that
defines how events should be handled. Recall that events are generated to deal
with achievement goals, that is, in order to find a plan that supplies the means
to achieve the goal. The triggering event component of the event denotes the
achievement goal for which a plan must be found. In case an appropriate plan
is found, the event is removed, the plan (rule) is pushed on top of the intention

140 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

component of the event and this new intention is added to the intention base of
the agent.

Definition 9.3.8 (proof rule IntendMeans)

<{ Tt <+'p(i’)7 [pli - -ipz])a - '}aBaI>
({---}, B, IU{[p1f...1p.1p]no})

such that
o po=e: ¢ (@) g5 -5 a,
e p=+!p(8) : ¢+ hi; ...; hy is a variant of a plan rule in P, such that the
variables that occur in p do not occur in either the event base or intention
base,

e 1) is a most general unifier such that p(%) = p(3)n, and
e B = ¢n8, for a ground substitution # such that dom(8) C Free(y8).

The substitution 5 unifies the triggering event +!p(5) in the head of the
plan rule and the triggering event +!p(%) in the event. Because 7 unifies both
triggering events, the plan hy; ...; h, in plan rule p may be a suitable plan for
establishing achievement goal !p(%). To check the suitability of the plan rule, an
appropriate instantiation of the context ¢ of the rule must be found. In case a
substitution @ can be found such that B = ¢, the plan may be selected. The
function of the substitution € is to retrieve specific parameters from the belief
base to instantiate the plan with. A new intention is constructed by pushing
the plan on the intention component of the event. The composed substitution
nf is used to instantiate variables in this new intention (and thus variables in
the plan).

There is one important difference between the rule IntendMeans as it has
been presented here and as it originally was presented in (Rao 1996a). The
difference concerns the renaming of variables. In the proof rule, a variant of a
plan rule p taken from P is used. In a variant all variables have been renamed (cf.
3.6.1). Such renaming is necessary to avoid interference between variables that
are introduced by the plan rule and those which already occur in the original
intention. The mechanism is completely analogous to the renaming mechanism
of 3APL and is discussed in more detail in chapter 3. Another modification
concerns the application of the substitution nf. This substitution should be
applied to the complete intention and not only to the last plan rule that is
pushed onto the intention. Otherwise, the mechanism for parameter passing
would be limited for no good reason.

The proof rule IntendMeans specifies how so-called internal events should be
handled. In (Rao 1996a), another rule is presented that deals with so-called
external events. External events are events in which the intention component
is absent. An intention called the true intention is constructed to model this
situation. We have not included a rule for external events, however, since such
events are not generated by the other rules in the proof system.

9.3. THE ELIMINABILITY OF EVENTS 141

The generation of an (internal) event is formally specified by the proof rule
below. It is the only proof rule in the proof system in which a new event
is created and added to the set of events. An event is generated in case -
during the execution of a plan on an intention j - an achievement goal must be
executed. To achieve such a goal !p(f) a plan has to be found, and an event
with a corresponding triggering event +!p(#) and corresponding intention j that
gave rise to the event is generated.

Definition 9.3.9 (proof rule ExecAch)
(E,B,{....,j,---})
(EU{(+p(D),5)}, B, {---})

such that
o j=[pt...5p. 1f(e: d <p(D); ho; ...5 hy)l.

Note that the intention j is removed from the intention base, which is indi-
cated by the fact that the intention base {...,7,...} is updated to {...}. This
is different from (Rao 1996a) where - if an event is generated - the intention
is not removed from the intention base. We do not quite understand why the
intention is not removed in the presentation of the semantics in (Rao 1996a). If
we trace the generation of an event and the consecutive handling of an event by
the rule IntendMeans, we see that the original intention is modified by pushing
a new plan on top of it. By also keeping a copy of the original intention in
the intention base, the suggestion is raised that this intention still needs to be
dealt with. For this reason, we have removed the intention from the intention
base. In (d’Inverno & Luck 1998), a somewhat different approach to the same
problem is taken. A status indicator is associated with an intention and in case
the intention has generated an event, the intention is suspended.

Proof rule ExecAch specifies what happens when an achievement goal is exe-
cuted. The next two proof rules specify what happens when an action or a test
goal is executed. As we discussed previously, we associate an update semantics
with actions here and do not simply add it to a set of actions that needs to
be performed by some external system. The update semantics generalises the
semantics of actions in (Rao 1996a).

In an update semantics for actions, the execution of an action results in
updating the belief base in correspondence with the specific update semantics
that is associated with the action. The type of update associated with an action
is given by the transition function 7. After updating the beliefs of the agent,
the action is subsequently removed from the intention.

Definition 9.3.10 (proof rule ExecAct)

(E,B,{...,[;mt...5(e: ¢ < a(f); ha; ...; hy)],...})
(E,B'. {....[p1f-..f(e: d < ha; ... B))],---},)

such that

142 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

e T(a(f),B) =B'.

A test goal ?p(f) is executed by checking whether an instance of the formula
p(f) is implied by the belief base of the agent. A test goal thus may retrieve data
from the belief base. This data is recorded in a ground substitution 6. After the
test has been successfully performed, the test goal is removed from the intention.
The substitution 8 is used to instantiate variables with the computed data in
the remaining part of the intention.

Definition 9.3.11 (proof rule ExecTest)

(E,B,{...,[;mt..-1(e: ¢ <2p(); ha; ...; hy)],...})
(B,B,{....[;1t.. . 1(e: ¢+ hy; ...; hp)]B,...})

such that
e B = p(f)d, and
e 7 is a ground substitution such that dom(#) = Free(p(%)).

Again, there are some minor differences between (Rao 1996a) and our def-
inition of the execution of a test goal. The most important one is that the
substitution 8 is applied to the complete remaining intention and not just to
the top element of the intention stack as is done in (Rao 1996a). The argument
here is similar to that made above concerning the application of a substitution
in the rule IntendMeans. The substitution 6 is also required to be a ground
substitution.

The previous proof rules dealt with the execution of intentions and the gen-
eration of events. The last two proof rules deal with the removal of a plan or an
intention that has been completely executed, respectively. The rule CleanStack-
Entry that is defined below was omitted in (Rao 1996a), as is also noted in
(d’Inverno et al. 1998). The proof rule implements the notion of an intention
that is said to have been ezecuted from definition 16 in (Rao 1996a). It is used
to remove a plan that has been completely executed. The entry occupied by
such a plan is popped from the intention so that execution can continue with
the remainder of the intention (which triggered the completed plan). Besides
removing the plan, the achievement goal which gave rise to the plan at the next
entry in the intention must also be removed. The reason is that completed plan
execution indicates that the goal has been achieved. An empty body in a plan
rule in an intention is used here to indicate that the plan has been executed
completely.

Definition 9.3.12 (proof rule CleanStackEntry)

(B,Bi{..,[mf...1p:4(+p(®) : ¢), })
(B,B,{...,lp}-- - 1pl],-- -}

such that

9.3. THE ELIMINABILITY OF EVENTS 143

o po=e:1p p(f); ho; ...; hn,
e pl=e:p he;...; hy.

In the case that a completely executed plan is the only item left on the in-
tention stack, the intention itself should be removed from the intention base.
For this purpose, the proof rule CleanIntSet is introduced. Again, no such rule
was provided in (Rao 1996a). The rule is provided here for completeness, al-
though the effect of removing a completely executed intention does not change
the observable behaviour of an agent as we will see below.

Definition 9.3.13 (clean rule CleanIntSet)

(E,B,{....,[+!p(}): ¢ &],...})
(E,B,{...})

Summarising, the set of proof rules presented in this section defines the
operational semantics of AgentSpeak(L) agents. Although we have based our
description of these proof rules on (Rao 19964), a number of changes to simplify
or improve the presentation have been made. The proof rule IntendEnd from
(Rao 19964) has not been included in our presentation, because it deals with
so-called external events which are never generated by a single agent. External
events probably make more sense in a multi-agent setting, but their use in a
single agent environment is less clear.

One of the more important differences between (Rao 19964) and our presen-
tation of the proof system concern the renaming of variables and the application
of substitutions. In private communication (Rao 1997), these modifications were
acknowledged to be improvements of the presentation in (Rao 1996a). The up-
date semantics associated with actions generalises the semantics of (Rao 1996a).
Finally, we provided proof rules for cleaning intention stacks in case a plan has
been completely executed.

Computations and Observables

For the purpose of simulating AgentSpeak(L) agents by 3APL agents we need
to formally define two concepts. In the framework of the previous chapter, the
basic concepts that must be formalised are that of a computation and that of
an observable.

To formalise AgentSpeak(L) computations, we can use the derivation re-
lation + on BDI configurations of the AgentSpeak(L) proof system from the
previous section. A proof rule in the proof system allows the derivation of a
new configuration from an old one. The derivation relation is written as C + C".
A derivation specifies a set of possible computations of an agent. This definition
is completely analogous to that of a 3APL computation in definition 8.1.1.

Definition 9.3.14 (BDI derivation)
A BDI derivation is a finite or infinite sequence of BDI configurations, i.e.

Co,...,Cy,..., where each C;;1 is derivable from C; according to a proof rule,
i.e. Cz - CH—I-

144 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

The choice of observables is suggested by taking a closer look at the way
AgentSpeak(L) agents are executed. An AgentSpeak(L) agent is intention-
driven. By this we mean that an agent continuously is occupied with executing
one of its intentions. As a result of executing its intentions, an agent updates
its beliefs. As a consequence, an agent can be viewed as computing with beliefs.
From this point of view, a computation then results in a sequence of belief bases
such that each belief base is identical to or an update of the previous belief base.
This perspective guides us in the choice of observables that is associated with
an agent system. It suggests that taking the belief base of the agent as the
observables of an agent system is a good choice.

Definition 9.3.15 (observables)

Let C* be the set of all BDI configurations, and let (E, B,I) € C' be such a
configuration. The function OF : C¥' — p(Lit) is defined by OL((E, B, I)) = B.
OF yields the observable of a configuration.

The most important parameter in the framework for bisimulation of the
previous chapter, the observables, has been decided by this choice. Notice that
we use only state-based observables here. For our purpose, this choice means
that we must show that agents from two different agent languages are capable
of producing the same sequences of (observable) belief bases. To show this,
we need to prove that there exists a natural translation from AgentSpeak(L)
agents to agents in another language, such that the translation of an Agent-
Speak(L) agent to this other language simulates that agent. In that case, the
latter language has at least the same expressive power as the former.

Notice that under this choice of observables the decoder function § in our
framework (cf. 8.3.1) trivialises. § can be identified with the identity func-
tion since belief bases, which we have choosen as observable for AgentSpeak(L)
agents, are also part of 3APL agents. By choosing the same observables for
3APL, we then do not need to ‘decode’ the 3APL observables anymore into
AgentSpeak(L) observables.

9.3.3 The syntax of AgentSpeak(1)

To show that AgentSpeak(L) agents can be simulated by agents which do not
use events in their operation, we now introduce a language that is very similar to
AgentSpeak(L) but does not include events. The definition of the syntax of this
language which we call AgentSpeak(1) is exactly the same as that for Agent-
Speak(L) except that AgentSpeak(1l) does not include events. AgentSpeak(1)
thus is a proper subset of AgentSpeak(L).

The first step in showing that AgentSpeak(1) has at least the same expres-
sive power as AgentSpeak(L) then is to construct a compositional translation
function 71 that maps AgentSpeak(L) agents onto AgentSpeak(1l) agents. A
natural candidate for the function 7 is the function that maps all syntactic
categories of AgentSpeak(L) to the same categories in AgentSpeak(1). This
works for all AgentSpeak(L) expressions except, of course, for AgentSpeak(L)

9.3. THE ELIMINABILITY OF EVENTS 145

events. Events need to be mapped onto some other expression since events are
not present in AgentSpeak(1).

The basic idea is to map events onto AgentSpeak(1l) intentions. The idea to
map events onto intentions is explained as follows. Events are used to indicate
that a plan to achieve some achievement goal has to be found. The creation
of an event thus forms an intermediate step in the process of creating a new
intention. The proof rule of AgentSpeak(L) that is important here is the rule
IntendMeans since it deals with events. An event is processed by pushing a
suitable plan onto the intention component of the event. Events thus are used
in an intermediate step in which a stack operation on an intention is performed.
It now becomes clear how we can do without events. By modifying the rule
ExecAch in such a way that it already incorporates the stack operation that
pushes a new plan on an intention, events are no longer necessary.

Definition 9.3.16 (translation function 1)

The translation function 7y that translates AgentSpeak(L) expressions into
AgentSpeak(1) expressions is defined as the identity, except for events, for which
it is defined by:

o mi({e,5)) =
It is easy to see that 7 is compositional. AgentSpeak(1) agents are similar

to AgentSpeak(L) agents but do not have an event base.

Definition 9.3.17 (AgentSpeak(1) agent)
An AgentSpeak(1) agent is a tuple (B, P, I) where

e B C Lit is a set of ground belief literals,
e P C PlanRule is a set of plans, and
e] CIntis a set of intentions.
such that all ¢ € I are of the form [+!true : true ¢ hq; ...; hy].

The translation of an AgentSpeak(L) agent (E, B, P, I) to an AgentSpeak(1)
agent by 7 is defined as follows: = ((E, B, P,I)) = (B, P,I U (E)). Here, we
assume that 7; is lifted to sets of expressions point-wise, i.e. 71 (5) = {m (s) |
s € S}. It is easy to verify that this mapping conforms with the compositionality
requirements that were outlined in the previous chapter in section 8.4.

9.3.4 Semantics of AgentSpeak(1)

The basic setup for the translation bisimulation has now been introduced. How-
ever, we still need to define the formal semantics for AgentSpeak(1). The opera-
tional semantics for AgentSpeak(1) can almost completely be copied from that of
AgentSpeak(L). The main effort is to formally define the idea introduced above
to simulate events. Apart from this modification of the semantics for Agent-
Speak(L), we also replace the style of presentation of the semantics. Instead of

146 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

the proof systems used to specify the semantics of AgentSpeak(L), we will use
a transition system to specify the semantics of AgentSpeak(1). The transition
system for AgentSpeak(1l) defines a transition relation —»q. This relation is
the analogue of AgentSpeak(1) for the derivation relation F of AgentSpeak(L).
The so-called BDI configurations of AgentSpeak(L) are replaced with slightly
different configurations for AgentSpeak(1). An AgentSpeak(1) configuration is
a pair that consists of beliefs and intentions.

Definition 9.3.18 (AgentSpeak(1) configuration)
An AgentSpeak(1) configuration is a tuple (B, I), where

e B C Lit is a ground belief base,
e] CIntis a set of intentions.

By definition, an AgentSpeak(L) configuration is mapped onto an Agent-
Speak(1) configuration by 71 as follows: 71 ({(E, B,I)) = (B, I U1 (F)).

The main difference between the semantics for AgentSpeak(L) and that for
AgentSpeak(1) concerns the handling of achievement goals. Whereas the rule
IntendMeans for AgentSpeak(L) generates an event to deal with such a goal,
in AgentSpeak(1) such an event-producing step is absent. Instead, the Agent-
Speak(1) transition rule for achievement goals immediately pushes an appropri-
ate plan for the goal on the intention of which it is a part. In this way, the need
for events is circumvented. In a sense, the transition rule for achievement goals
combines the rules IntendMeans and ExecAch into a single rule.

Definition 9.3.19 (transition rule for achievement goals)
Let 7 be a most general unifier for !p(#) and !p(3) such that p(?) = p(5)n, and
0 be a ground substitution.
B = ¢nf
<B7{" '7[pli- --ipz]a' }) —n1 (B,{ "7[pli-- ipzip]naa })

such that

e p=+!p(3): ¢« hi; ...; hy is a variant of a rule in P such that variables
that occur in p do not occur in the intention base of the agent,

e p.=e:p<p(d); ¢ ...; i

The meaning of an intention is slightly changed by this transition rule. This
illustrates our remark at the very end of the previous chapter that small changes
in the meaning of one and the same construct in the source and target language
is allowed. As we show below, this shift in meaning still allows us to simu-
late AgentSpeak(L) agents with the benefit of reducing the complexity of the
operation of AgentSpeak(L) since events are no longer needed.

The other four rules of AgentSpeak(1) are the transition rule variants of the
rules ExecAct, ExecTest, CleanStackEntry, and CleanIntSet, respectively. In these
rules, the set of events is dropped from the configurations.

9.3. THE ELIMINABILITY OF EVENTS 147

Definition 9.3.20 (transition rule for actions)

T (a(f),B) = B’

(B, {...[p1f.t(e: ¢+ a(®); hos -ors hn)
(B, {..,[pr1.--1(e: ¢ « ha; ... hy)

B —n

s

],
)]s
Definition 9.3.21 (transition rule for test goals)

Let 8 be a ground substitution such that dom(8) = Free(p(%)).

B = p(P)f
(B,{...,[p11..1(e: ¢ <?p(); ha; s By, }) —1
(B,{...,[p11..1(e : ¢ < ha; ...; By)]6,...})

Definition 9.3.22 (transition rule to clean a stack entry)

(B A [t 4o (+1p(E) : 6)],) —1 (B, [mf - 10l)

such that
o p.=e: P Ip(D); hy; -5 b,
e ph=e:p hy; ...; hy.

Definition 9.3.23 (transition rule to clean the intention base)

(B,{...,[+'p(D) : ¢ <],...}) —1 (B, {...})

Computations and Observables

The transition relation —»; is the counterpart of AgentSpeak(1) for the deriva-
tion relation F of AgentSpeak(L). The choice of observables for AgentSpeak(1)
is the same as that for AgentSpeak(L): the belief base of an AgentSpeak(1)
configuration. As noted above, because of this choice we can use the identity
function as decoder § to map observables from AgentSpeak(1) to AgentSpeak(L)
in the framework for translation bisimulation. It is an immediate consequence
that & is compositional.

Definition 9.3.24 (observables)

Let C! be the set of all AgentSpeak(1) configurations. The function O! : Ct —
p(Lit) is defined by O ((B, I)) = B for all (B, I) € C'. O! yields the observable
of an AgentSpeak(1) configuration.

148 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

9.3.5 AgentSpeak(1) bisimulates AgentSpeak(L)

To show that 7 is a translation bisimulation and that AgentSpeak(1) simulates
AgentSpeak(L), we have to show that every computation step of an Agent-
Speak(L) agent can be simulated by the translated AgentSpeak(1) agent, and
vice versa. To prove this, there is only one more thing we have to decide: which
steps may be considered as silent steps. In this chapter, all computation steps
in which the observables are not changed are considered as silent steps. In the
previous chapter, we argued that this is a very natural choice. That is, the silent
steps of AgentSpeak(L) are those steps C' - C' such that O%(C) = O*(C")
and the silent steps of AgentSpeak(1) are those steps C —; C' such that
o(c) =0 .

The parameters of the simulation problem are now completely fixed, and we
need to prove that steps of AgentSpeak(L) agents can be simulated by Agent-
Speak(1) agents, and vice versa. Since proof rules and transition rules define
what steps an agent can perform, we need to check each of these rules in turn
and see whether or not the step defined by a rule can be simulated. Since all
AgentSpeak(1) rules except for the transition rule for achievement goals are
nothing but notational variants of proof rules for AgentSpeak(L), the proof in
these cases is rather straightforward.

It thus suffices to show that the computation steps defined by the proof rules
IntendMeans and ExecAch can be simulated by AgentSpeak(1) steps, and that
the transition rule for achievement goals can be simulated by AgentSpeak(L)
steps. Each of these cases is dealt with in turn below.

Theorem 9.3.25
The computation step defined by the proof rule ExecAch of AgentSpeak(L) can
be simulated by AgentSpeak(1) steps.

Proof: By inspection of the proof rule ExecAch and the definition of 7y, it is
easy to see that the AgentSpeak(L) configuration in the premise of the rule and
the configuration of the conclusion of the rule are mapped onto the same Agent-
Speak(1) configuration. The step defined by the proof rule ExecAch thus can
be considered as a silent step and no AgentSpeak(1) step is needed to simulate
this computation step. O

Theorem 9.3.26
The computation step defined by the proof rule IntendMeans of AgentSpeak(L)
can be simulated by AgentSpeak(1) steps.

Proof: Let

A=(EU {(—Hp(?), [p1f...1p:])}, B, I), and
A'=(E,B,IU{[p1}...1p:1pnb})

such that A - A’. Note that since IntendMeans is the only proof rule in which
an event is removed from the event base, the step A - A’ must have been a step
defined by this rule.

9.3. THE ELIMINABILITY OF EVENTS 149

The translation function 7 maps A onto M = 7(4) = (B,IUn(E)U
{[mI...1p.]}). Since rule IntendMeans must have been used here, p, must be
of the form e : ¢ (—!p(f); g2; ---; gi- Moreover, a plan rule p must provide a
suitable plan for !p(f) and substitutions 5 and # must be available such that the
head of p unifies with !p(#) and the context of the rule is satisfied. In that case,
we can apply the transition rule for achievement goals of AgentSpeak(1) to M
and we obtain: M' = (B,IU T (E)U{[p1I..-1ip.ip|nd}). It is easy to see that
71(A") = M’, since we have that 71 (inf) = 71 (i)nf for an intention 4. O

Note that although the proof rule IntendMeans defines a silent step, the step
that it defines cannot be simulated by performing no AgentSpeak(1) step at all.
The reason is that 71 (C) # 7 (C") if C + C' is a computation step derived by
the proof rule IntendMeans.

Theorem 9.3.27
The computation step defined by the transition rule for achievement goals of
AgentSpeak(1) can be simulated by AgentSpeak(L) steps.

Proof: To simulate steps derived by the transition rule for achievement goals
by AgentSpeak(L), we may need to perform more than one AgentSpeak(L)
step. This is due to the fact that the transition rule combines the proof rule
IntendMeans as well as the proof rule ExecAch. Because steps defined by either of
these proof rules are silent steps, it is allowed to use both types of computation
steps.

Now, suppose that A is a BDI configuration, M = 71(4), and M —1 M’
is a computation step derived by the transition rule for achievement goals. M
and M' are both AgentSpeak(1) configurations. We need to show that there is
a BDI configuration A’ such that A+ A’ and M' =1 (4").

Since the rule for achievement goals has been used to derive M —; M,
the configurations M and M’ must be of the form:

M =71(4) = (B, IU{[p1I.-.1p:]}), and ,
M'=(B,IU{[p1}...1p-1pIn0})

By inspection of the translation function 71, we need to distinguish two
cases. In the first case (i), the intention [p1}...1p.] is a translation of an
event in configuration A; in the second case (ii), it is a translation of an in-
tention in configuration A. In both cases, p, must be of the form e : ¢
'p(?); g2; ...; g If (i) is the case, then we have that proof rule ExecAch is
applicable, and by performing the associated step we obtain a configuration of
the first type (i). Recall that ExecAch defines a silent step and we are allowed
to use it. We thus may assume that we have a configuration A of the form
{E U {(+'p(D),[p1]--.1p.])}, B, I). Since the transition rule for achievement
goals is applicable to 71 (A), we know that all the conditions of the proof rule
IntendMeans are also satisfied and we know that this rule is applicable. (Just
compare the conditions of both rules.) By applying the rule IntendMeans, we

150 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

obtain a new configuration A’ = (E, B, I U{[p1...1p.Ip]nb}). It is easy to see
that 7 (4') = M', and we are done. O

We summarise the results of this section. Our aim was to prove that Agent-
Speak(1) agents bisimulate AgentSpeak(L) agents and that (internal) events
are eliminable from AgentSpeak(L). We thus have to verify that the conditions
of eliminability defined in 8.4.4 are met. Because AgentSpeak(1) syntactically
is a proper subset of AgentSpeak(L), condition F3 of definition 8.4.4 is met.
Moreover, since both the translation function 71 and the decoder ¢ are compo-
sitional, condition F1 is met. Finally, it follows from the theorems above that
71 i8 a translation bisimulation. This corresponds to condition F2 in definition
8.4.4. Taken together, this concludes the proof that events are eliminable from
AgentSpeak(L), and we also have that AgentSpeak(1) has at least the same
expressive power as AgentSpeak(L).

The proof that the translation function 7; is a translation bisimulation is a
proof that AgentSpeak(1) has the expressive power of AgentSpeak(L), but not
necessarily the other way around. However, we claim that AgentSpeak(L) also
has the expressive power of AgentSpeak(1). Although we did not give a formal
proof of this claim, the proof is easily derived from the proofs in this section.
The translation function to show that AgentSpeak(L) has the same expressive
power as AgentSpeak(1) - as can be easily verified - is the identity function. As
a result, AgentSpeak(L) and AgentSpeak(1) have exactly the same expressive
power.

9.4 The Transformation of Intentions to Goals

The second step in the proof that AgentSpeak(L) agents can be simulated by
3APL agents consists of showing that intentions can be simulated by 3APL
goals. The proof continues with the language AgentSpeak(1). Since we already
know that AgentSpeak(1) has the expressive power of AgentSpeak(L), it suffices
to show that 3APL has the expressive power of AgentSpeak(1l). Apart from
some minor notational differences, it is easy to see that if the intentions of
AgentSpeak(1) are replaced by 3APL goals, a new language that is a subset of
3APL is obtained. Note that triggering events in fact were already redundant in
AgentSpeak(1), and can be replaced with the achievement goals they represent.
The language obtained in this way is called AgentSpeak(2).

First, we introduce the syntax of AgentSpeak(2) and we define a compo-
sitional translation function 72 from AgentSpeak(1l) to AgentSpeak(2). Then
the semantics of AgentSpeak(2) is defined and we prove that 7» is a translation
bisimulation.

9.4.1 Syntax of AgentSpeak(2)

The main difference between the syntax of AgentSpeak(1) and AgentSpeak(2) is
that the latter does not have intentions. Also, a number of other changes in the

9.4. THE TRANSFORMATION OF INTENTIONS TO GOALS 151

syntax of AgentSpeak(1) goals and plan rules have been made to compensate for
minor differences between the syntax of AgentSpeak(L) and 3APL. The symbol
! marking that a goal is an achievement goal in !¢ is simply dropped. ?¢ is
written as ¢?. And finally, a plan rule +!p(%) : ¢ < hy; ...; hy, is written as
p(t) < ¢ | h; ...; hy. Notice that due to this change in the syntax of plan
rules, there is no need anymore for triggering events. Triggering events thus are
also eliminated from AgentSpeak(L).

The syntax of AgentSpeak(2) beliefs and actions is identical to that of Agent-
Speak(L) and is not repeated. A new type of goal is introduced in the language
AgentSpeak(2): a composed goal that consists of a sequence of simple goals and
actions. It is easy to see that the language AgentSpeak(2) (syntactically) is a
subset of 3APL.

Definition 9.4.1 (AgentSpeak(2) goals and plan rules)
The syntax of AgentSpeak(2) goals and plan rules is defined as follows:

e If ¢ € At, then ¢ € Agoal(2),
e If ¢ € At, then ¢? € Agoal(2),

e If hy,...,h, € (Agoal(2) UAct), then hy; ...; h, € Agoal(2),
o If ¢ € At, by,..., b, are belief literals, and hy, ..., h, € (Agoal(2) U Act),
then ¢ <~ by A...Ab, | h; ...; h, € PlanRule(2).

The next step is to construct a compositional translation function 75 from
AgentSpeak(1) agents to AgentSpeak(2) agents. The translation again is rather
straightforward and mainly deals with small changes in syntax between Agent-
Speak(1) and AgentSpeak(2). The main effort that has to be made is in the
translation of intentions to AgentSpeak(2) goals. This translation requires that
a stack of plans is mapped onto a sequence of actions and simple goals. The
basic idea here is to pop each plan from the intention and put them in sequence.
However, any achievement goals that triggered the addition of a plan on the
stack should be removed. These goals are ‘implemented’ by these plans and are
no longer required.

Technically, we define an auxiliary function 74, and use a function body to
obtain the body of a plan rule. 7 removes the head h; of the sequence from
any plan hy; ...; hy, in an intention. In the intentions that are constructed
during execution, h; is an achievement goal. Since such goals are implemented
by plans at the next higher entry in the stack except for the top element, they
can be removed. The tails of the plans are put into sequence. Note that the
top element of a stack is executed first and needs to be put at the front of the
AgentSpeak(2) goal.

Example 9.4.2 As a very simple example of such a translation, consider the
intention [+!p : ¢ +!gq; at+!q : ¢ «!r; b]. The last plan on this intention (the
top element) must be executed first. This means that the achievement goal !r
must be executed (and should not be removed!) followed by b; after the plan has

152 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

been executed it is removed and execution continues with the bottom element
on the intention stack. Since the achievement goal !q is implemented by the top
plan, this achievement goal has to be removed in contrast with the achievement
goal !r. What remains to be done is action a and, in the translation, we thus
obtain a new goal r; b; a since the symbol ! is removed in the translation of an
achievement goal.

We use E to denote the empty goal below, and stipulate that hy; ...; hy; E
is identified with hy; ...; hy

Definition 9.4.3 (translation function 1)
The translation function 7 that translates AgentSpeak(1) expressions into Agent-
Speak(2) expressions is defined as the identity, except for the following cases:

o 7(lg) = 9,
o 7(?79) = 7,
o no(+p(D) i b5 ..; ha) =p(E) < & | has ...5 b,

o ([t 1p i (+1p(E) s ¢ hus hos .5 hy)]) =
hos . ..5 by ([prt .. 1p2]),

e () =E,
o no([prf---1pe]) = body(ma(p2)); m5([pr- - 1pza))-

Again, it is easy to see that 7 is compositional. Notice that the composition
71 0 Ty translates AgentSpeak(L) expressions to AgentSpeak(2) expressions.

AgentSpeak(2) agents consist of a belief base, a goal base and a plan base.
The goal base of an AgentSpeak(2) agent replaces the intention base of an
AgentSpeak(1) agent.

Definition 9.4.4 (AgentSpeak(2) agent)
An AgentSpeak(2) agent is a tuple (B, P, G) where

e B C Litis a set of ground belief literals,
e P C PlanRule(2) is a set of plan rules, and

e G C Agoal(2) is a set of goals.

The translation function 72 is extended to agents and an AgentSpeak(1)
agent (B, P,I) is mapped onto the AgentSpeak(2) agent (B, (P),72(I)). T
is lifted point-wise to sets.

9.4. THE TRANSFORMATION OF INTENTIONS TO GOALS 153

9.4.2 Semantics of AgentSpeak(2)

The semantics of AgentSpeak(2) is that of 3APL, but it can also be looked upon
as a transformation of the AgentSpeak(1) semantics. The transformation of
the AgentSpeak(1) semantics to the AgentSpeak(2) semantics then involves the
replacement of rules that deal with intentions to rules that deal with composed
goals. The intention base of AgentSpeak(1l) configurations is replaced with a
goal base in AgentSpeak(2) configurations.

Definition 9.4.5 (AgentSpeak(2) configuration)
An AgentSpeak(2) configuration is a pair (B, G), where

e B C Litis a closed belief base, and

e (G C Agoal(2) is a set of goals.

By definition, an AgentSpeak(1) configuration is mapped onto an Agent-
Speak(2) configuration by 72 as follows: 72 ({B,I)) = (B, 72(I)).

The main difference between the transition rules of AgentSpeak(1) and those
of AgentSpeak(2) is that the transition rules of AgentSpeak(2) exploit the re-
cursive capabilities of transition systems. That is, the transition rules of Agent-
Speak(2) are defined on the syntactic structure of agents and goals. The rules
decompose a composed goal to its elementary parts, and the semantics of a
composed goal is derived from the rules for the elementary parts. For example,
the semantics of a sequential goal is derived from the semantics of the head of
the sequential goal.

The transition rules for AgentSpeak(2) are (almost completely) the same as
those for 3APL (cf. chapter 3), but for completeness we will present them here
once again. The transition rule for agent execution selects a goal that can be
executed or that can be modified by applying a plan rule. This transition rule
defines a transition relation —5 on AgentSpeak(2) configurations (B, G). The
transition relation — 4 is derived from another transition relation denoted by
—>. —> is a relation on pairs (B, 7) of a belief base and a single goal.

Definition 9.4.6 (transition rule for agent execution)

(BJW)V —0 <Bla7rl)
Blm) — (B L.,

where V is the set of variables in {...,n,...}.

To handle an achievement goal, a plan must be found for achieving the goal.
In case such a plan can be found, the achievement goal is replaced by this plan.
The transition rule for achievement goals is the AgentSpeak(2) analogue for the
rule IntendMeans of AgentSpeak(L).

154 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

Definition 9.4.7 (transition rule for achievement goals)
Let 77 be a most general unifier such that p(f) = p(3)n, and 6 be a ground
substitution such that dom(6) C Free(¢n).

B |= ¢nb
(B,p()))v —4 (B, (h1; -5 hn)1)
such that
e p(8) < ¢ | hi; ...; hy is a variant of a rule in P such that variables in

this rule do not occur in V.

The execution of a basic action consists in an update on the belief base.
@ denotes the empty substitution and the symbol E denotes the successful
termination of a goal.

Definition 9.4.8 (transition rule for actions)
T(a(f),B) = B'
<Baa(£))V —o <BlaE)

As before, a test is used to inspect the belief base.

Definition 9.4.9 (transition rule for tests)
Let 6 be a ground substitution such that dom(8) = Free(p(%)).

B Ep(h)o
(Bap(ij?>V —9 <BaE)

The rule for a sequence of actions and simple goals selects the head of the
sequence for execution, executes it and updates both the belief base and the
goal accordingly.

Definition 9.4.10 (transition rule for a sequential goal)
Let 6 be a substitution.

(B,h1) —¢ (B', hy)
(B,h1; ho; ... hp)y —g (B, (h]; ho; ...; hy)B)

9.4.3 Computations and Observables

An AgentSpeak(2) computation is a finite or infinite sequence of AgentSpeak(2)
configurations where each consecutive pair is related by the transition relation
— 9. As before in the case of AgentSpeak(1), the choice of observables is the
same as that for AgentSpeak(L): the belief base of an AgentSpeak(2) configu-
ration. Again, the decoder ¢ is the identity function.

Definition 9.4.11 (observables)

Let C2? be the set of all AgentSpeak(2) configurations. The function 02 : 2 —
p(Lit) is defined by O?((B, G)) = B. O? yields the observable of an Agent-
Speak(2) configuration.

9.4. THE TRANSFORMATION OF INTENTIONS TO GOALS 155

9.4.4 AgentSpeak(2) simulates AgentSpeak(1)

To show that 7» is a translation bisimulation and that AgentSpeak(2) simulates
AgentSpeak(1), we have to show that every computation step of an Agent-
Speak(1) agent can be simulated by the translated AgentSpeak(2) agent, and
vice versa. As before, we will use the criterion that transitions in which ob-
servables are not changed are considered to be silent steps. The proof consists
of checking whether computation steps defined by the different transition rules
can be simulated. The proof for most of the transition rules is rather straight-
forward. Therefore, we will only provide a proof for the most complex case,
namely the case that a plan rule is applied in a computation step.

Notice that the computation steps for cleaning intention stacks and the inten-
tion base are silent steps which require no AgentSpeak(2) step at all to simulate
these steps. The reason is that the translation function 75 maps the configura-
tion in the premise of these rules onto the same AgentSpeak(2) configuration as
the conclusion of these rules.

Theorem 9.4.12
The computation step defined by the transition rule for achievement goals of
AgentSpeak(1) can be simulated by an AgentSpeak(2) step.

Proof: Suppose that the AgentSpeak(1) step A —»1 A’ is derived by the tran-
sition rule for achievement goals of AgentSpeak(1). In that case, 4 is of the form
(B,TU{[p1i...1p.]}) and A’ must be of the form (B, I U {[p11...1p.ipn0}).

Moreover, p, and p must be of the form e : ¢ <—!p(f); g2; -.-; g1, and
+1p(8) : ¢ « hi; ...; hy, respectively.
The translations of both agent A and A’ are:
M =13(4) = (B, (1) U {p(®); 72(g2); ---5 7=2(q0); T ([pr}---pzz1)})
M =7n(4A") =
(B, r2(I) U{(h1; -5 hns 72(g2); ---; 72(90); m5([prk---1pz-1]))nb})

It is easy to check that by means of the transition rule for agent execution,
the transition rule for a sequential goal, and the transition rule for achievement
goals of AgentSpeak(2) we can derive that M — o M'. Use the fact that the
conditions required in the transition rule for achievement goals are the same in
AgentSpeak(1) and AgentSpeak(2). O

Theorem 9.4.13 The computation step defined by the transition rule for achieve-
ment goals of AgentSpeak(2) can be simulated by an AgentSpeak(1) step.

Proof: Let M = m(A) = (B, G), and suppose that M — M' is derived
by the transition rule for achievement goals of AgentSpeak(2). This implies
that a goal of the form p(f); 7 must be an element of the goal base G for
some (possibly empty) sequence w. By inspection of the translation function
Ty, this goal must have originated from an intention in the configuration A.
But in that case, we can apply the transition rule for achievement goals of

156 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

AgentSpeak(1) to transform the intention and add the same plan that was used
in the AgentSpeak(2) computation step M —o M’ to the stack of plans. This
step results in a new configuration A'. It is not difficult to check that the
translation function 7» maps this configuration to M’, that is, 2(A") = M', and
we are done. O

We summarise the results of this section. Our aim was to show that Agent-
Speak(2) agents can simulate AgentSpeak(l) agents. We need to check the
requirements of definition 8.4.1 in which the notion of relative expressive power
is formally defined. First, since both the translation function 75 as well as
the decoder é are compositional, condition E1 is met. The second condition
E2 is met by theorems 9.4.12 and 9.4.13 which show that 7, is a translation
bisimulation. Taken together, this concludes the proof that AgentSpeak(2) has
at least the same expressive power as AgentSpeak(1).

As before, we believe that AgentSpeak(1) also has the expressive power of
AgentSpeak(2). In that case, both languages have the same expressive power.
Since AgentSpeak(2) is a proper subset of 3APL, by transitivity of the expres-
siveness relation we obtain that 3APL has at least the same expressive power
as AgentSpeak(2).

Since AgentSpeak(2) is a proper subset of 3APL, 3APL may still have more
expressive power than AgentSpeak(L). In particular, there is one feature of
3APL that has not been used in the simulation of AgentSpeak (L) agents, namely
practical reasoning rules. Practical reasoning rules allow for a more general type
of goal revision (cf. also chapter 4). It is not easy to see how this feature can
be simulated by AgentSpeak(L), and we conjecture that 3APL indeed has more
expressive power.

9.5 Conclusion

A formal comparison of AgentSpeak(L) with 3APL showed that 3APL has at
least the same expressive power of AgentSpeak(L) and probably has more ex-
pressive power. The proof of this claim focused on the main conceptual differ-
ences between both languages: the concept of an event and of an intention which
are part of AgentSpeak(L) but not of 3APL. It was shown that the former can
be eliminated from AgentSpeak(L) and the latter can be translated into 3APL
goals.

A number of 3APL features were not needed to simulate AgentSpeak(L)
agents. In particular, a number of (imperative) programming constructs like
parallel composition and non-deterministic choice have not been used. Another
feature that has not been used are the more complex practical reasoning rules of
3APL. In the bisimulation proofs, we only used plan rules. Practical reasoning
rules may have a more complex structure than the plan rules of AgentSpeak(L).
A practical reasoning rule also provides the means for modifying composed
plans or goals of an agent (cf. chapter 4), and do not just provide the plans for
achievement goals.

9.5. CONCLUSION 157

The lack of a number of regular programming constructs should not be
viewed as too great a difference, since it is easy enough to extend AgentSpeak(L)
with such constructs. As we noted above already, however, the practical reason-
ing rules of 3APL that provide for a more general revision mechanism of com-
posed goals (to which intentions are translated) is of more interest. We believe
it is not possible to define a translation bisimulation that translates arbitrary
3APL agents including this feature into AgentSpeak(L) agents. Therefore, we
conjecture that 3APL has strictly more expressive power than AgentSpeak(L).

From the bisimulation result, we can conclude that the notions of events and
intentions play a similar role and in fact can be identified. This follows from the
the fact that both events and intentions are simulated by 3APL goals. Events
as well as intentions are mapped onto goals by the translation function 71 o 75.

As we showed, events can be eliminated from AgentSpeak(L) without re-
ducing its expressive power. Intentions cannot be removed without reducing
the expressive power of the language. However, the simulation results do show
that there is no need to maintain a complete stack of plan rules as is done in
AgentSpeak(L). Intentions consists of a lot of redundant information that is not
used in the operation of an agent. That this extra information can be removed
is shown by the fact that intentions are simulated by 3APL goals which do
not contain this information. The bookkeeping for which both events and in-
tentions are used, therefore, only complicates the semantics of AgentSpeak(L).
Since there is no loss of expressiveness, stacks and (triggering) events can be
viewed as one possible implementation of the agent language AgentSpeak(L),
but preferably should not be incorporated into the semantics of the language.

Of course, one could argue that it is useful for an agent to keep track of the
achievement goals that it is pursuing and the plans it is trying to use to achieve
these goals as is done in an intention. For example, if a plan fails to achieve a
goal, the plan could be dropped, the old goal could be retrieved (from the next
entry in the intention structure) and a new plan could be searched for. Although
this argument is valid, the complexity both from a theoretical and a practical
perspective of this kind of ‘backtracking’ is not to be underestimated and raises
questions concerning the viability of the idea. First of all, new types of rules
would have to be introduced that can be used to change intention structures in
a way imagined here. These new rules would make the semantics considerably
more complex. Another problem is that it is not (yet) clear when and how to
use this type of ‘backtracking’. Moreover, there is a more simple alternative as
we showed in chapter 4. Practical reasoning rules of 3APL can be used in a very
flexible way to achieve similar goals. These rules are a suitable and practical
means to incorporate a goal revision mechanism into an agent language.

Finally, apart from the operational semantics for AgentSpeak(L), in (Rao
19964) also an algorithm for an interpreter for AgentSpeak(L) is defined. This
algorithm specifies in which order the proof rules should be used to execute
AgentSpeak(L) agents. For example, in every cycle of the interpreter first an
event is processed and then an intention is processed. We have looked in more
detail at the specification of an interpreter for AgentSpeak(L) in (Hindriks et al.
1999b). In this paper, the results obtained in this chapter that events and

158 CHAPTER 9. AN EMBEDDING OF AGENTSPEAK(L) IN 3APL

intentions can be translated into goals have been used.

CHAPTER 10

An Embedding of
ConGolog in 3APL

An interesting alternative for agent programming, based on a logical perspective,
is offered by the concurrent language ConGolog (Giacomo et al. 2000). In this
chapter, we present a formal comparison of ConGolog with 3APL. ConGolog
was conceived of as a language for high-level robot programming. ConGolog,
like its predecessor Golog (Levesque et al. 1997), is an extension of the situation
calculus that supports complex actions as well as a logic programming language
for agents and robots. We show that ConGolog and 3APL are closely related
languages by constructing an embedding of ConGolog in 3APL. A number of
interesting issues need to be resolved to construct the embedding. These in-
clude a comparison of states in 3APL with situations in ConGolog, the form of
basic action theories, complete vs. incomplete knowledge, and execution models
specifying the flow of control in agent programs.

First, we introduce the situation calculus and a formalisation of action theo-
ries within this formalism. ConGolog is an extension of these action theories to a
real programming language. The semantics of ConGolog is defined by means of
the situation calculus. In the second half of the chapter, we define a translation
function of ConGolog programs into 3APL agents and prove that the function
defines a translation bisimulation.

10.1 Action Theories in the Situation Calculus

ConGolog is a programming language specified in and based upon the situation
calculus (McCarthy & Hayes 1969). ConGolog extends basic action theories in
the situation calculus to a real programming language. It allows the construction
of composed program structures built from basic actions. Basic action theories
are used to specify the preconditions and effects of basic actions that are used
in ConGolog programs. A basic action theory only fixes the basic structure for

159

160 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

specifying actions, but leaves the choice of basic actions to the programmer. We
first introduce the situation calculus and then define what a basic action theory
is.

10.1.1 The Situation Calculus

The situation calculus is a three-sorted, first order logical language, extended
with some second order features. The situation calculus is specifically designed
for representing dynamically changing worlds. Changes are the result of named,
deterministic actions, and a possible world history therefore can be identified
with a sequence of actions. Finite action histories are represented by first order
terms called situations in the situation calculus. The language of the situation
calculus Lgtcalc has three sorts: A sort situation, a sort action, and a sort object
for everything that is neither a situation nor an action.

Definition 10.1.1 (alphabet of Lsitcaic)
The alphabet of L;tcq1. consists of the following sets of symbols:

e Countably infinitely many variables for each sort; we use s to denote
variables of sort situation, a for variables of sort action, and xz,y for
variables of sort object.

e Two function symbols of sort situation: (1) the constant Sy denoting the
initial situation, and (2) the function do of sort : action X situation —
situation where do(a,s) denotes the successor situation resulting from
performing action a in situation s.

e A binary predicate C of sort : situation X situation which is defined as a
partial order on situations.

e A binary predicate Poss of sort : action x situation. The intended inter-
pretation of Poss(a, s) is that a can be executed in s.

e A finite number of predicate symbols for each sort (action U object)”™ and
function symbols for each sort (action U object)” — (action U object).
These predicate and function symbols are situation-independent.

e A finite number of predicate symbols of sort (action U object)™ x situation.
These predicate symbols are called relational fluents.

Note that only two function symbols - Sy and do - are allowed to take values
in sort situation. Also note that only the binary predicate C has more than
one argument of sort situation. The language Lsitcqaic is built from a given
alphabet and the usual logical vocabulary, i.e. equality, negation, conjunction,
and the universal quantifier. The other logical connectives like V, —, <> and the
existential quantifier 3 are defined as the usual abbreviations. < is also written
as =.

10.1. ACTION THEORIES IN THE SITUATION CALCULUS 161

Notice that we did not include functional fluents in the language of the
situation calculus. Functional fluents are left out because of the particular call-
by-value mechanism that is used as a parameter mechanism in ConGolog for
procedure calls, which would not be state based in the presence of functional
fluents. For our purposes, we are only interested in eliminating functional flu-
ents; other types of function symbols are allowed.

In the sequel, we will often be interested in the formulas that hold in the
‘current’ situation s, and that only refer to the situation s. To identify the
formulas that talk about a particular situation, we introduce the notions of a
uniform term and a uniform formula. A term or formula that is uniform in a
situation s only refers to s.

Definition 10.1.2 (uniform term, formula)
Let S be any term of sort situation. Then the set Ts of terms uniform in S is
inductively defined by:

o SeTg,
e if a term ¢ does not mention a term of sort situation, then ¢t € Tg,

e if f is an n-ary function symbol other than do and t,...,t, € Ts whose
sorts are appropriate for f, then f(t1,...,%,) € Ts.

The set Lg of formulas uniform in S is inductively defined by:
e if t;, 1y € Ts are of the same sort, then t, = t, € L3,

e if P is an n-ary predicate symbol, other than Poss and C, and #,...,%, €
Ts are of the appropriate sorts, then P(t1,...,t,) € Lg

o if 1,00 € Lg, then —p1,p1 A2 € Lg

e if p € Ls and z is a variable not of sort situation, then Vz(p) € Lg.

A formula that is uniform in S does not mention the predicates Poss or C, nor
does it quantify over situation variables. The only term of sort situation which
can occur in a formula that is uniform in S is S itself. In a model M (and
valuation v) for Lgitcalc, the true formulas which are uniform in S can be said
to characterise situation S. In other words, these formulas completely specify
the state denoted by S.

Notation 10.1.3 We introduce a special constant now of sort situation and
denote by L, the set of formulas uniform in now. The intended interpretation
of this constant is that it denotes the current situation. If o is any (set of)
formula(s) that is uniform in now, we denote by o[S] the (set of) formula(s)
that is obtained by substituting S for now in ¢. Note that ¢[S] is uniform in S.

162 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

10.1.2 Foundational Axioms

The basic intuitions associated with the notion of a situation are captured by a
set of so called foundational azioms (cf. Pirri & Reiter (1999)). These axioms
are listed in definition 10.1.4. The first axiom below states that situations
are uniquely identified by situation terms, and implies that situations can be
identified with action histories. The second axiom is a second order axiom which
captures the intuition that all the situations that exist are the ones reachable
by doing a finite number of actions. The third axiom states that Sy is the initial
situation. And finally, the fourth axiom states that a situation s is a predecessor
of a situation do(a,s') iff s is a predecessor of s’ or s and s’ denote the same
situation. Although these foundational axioms impose a basic structure upon
the set of possible situations, the axioms do not play an important role in
the definition of the programming language ConGolog (cf. also Pirri & Reiter
(1999)).

Definition 10.1.4 (foundational azioms) !

do(ay,s1) = do(az, s2) = (a1 = a2 A 51 = $2) (10.1)
VP([P(So) AY a,s(P(s) = P(do(a,s))] = Vs(P(s)) (10.2)
—s [So ()
sC do(a,s')=sC s (10.4)

where s C s’ abbreviates s C s' Vs =s'.

10.1.3 Basic Actions

A basic action theory in the situation calculus defines a framework for specifying
the pre- and postconditions of actions. Three types of axioms are introduced
to specify actions. First of all, a set of unique names azxioms for actions is
introduced. These axioms are used to make sure that action names refer to
different actions, and that an action symbol supplied with one set of param-
eters is distinguished from that action symbol supplied with a different set of
parameters.

Definition 10.1.5 (unique names azioms for actions)
The set of unigue names azioms for actions includes the following axioms:

a(z) # b(¥)

where a(Z) and b(%) are expressions of sort action, and the set of variables 7
and ¥ are disjoint, for each pair of action symbols a and b;
and for any action symbol a:

a(f) =a(y) - =14.

IThe free variables in formulas which occur in definitions throughout this chapter are
implicitly universally quantified.

10.1. ACTION THEORIES IN THE SITUATION CALCULUS 163

The second type of axioms are called action precondition azioms. These
axioms specify when an action is enabled, i.e. they specify what preconditions
must hold in order for an action to be executable in a situation. The uniformity
condition on II,(Z, s) is used to make sure that the preconditions of an action
a(?) depend only on the current situation s.

Definition 10.1.6 (action precondition aziom)
An action precondition azxiom is of the form:

Poss(a(%),s) =11,(%, s)

where a(Z) is an expression of sort action, and II,(Z, s) is a formula that is
uniform in s and whose free variables are among Z, s.

The last type of axioms are called successor state axioms. Successor state
axioms relate the value of a fluent in the situation that results from doing
an action to their value in the previous situation, and define the effects of
executing an action. Successor state axioms also provide a solution to the frame
problem (Reiter 1991). The uniformity condition on ® (%, a, s) guarantees that
the database associated with the successor situation (the database of uniform
formulas that hold in that situation) can be computed from that of the previous
situation.

Definition 10.1.7 (successor state axiom)
A successor state aziom for a relational fluent F is of the form:

F(Z,do(a,s)) = ®p(Z,a,s)
where @ (Z, a, $) is a formula uniform in s and whose free variables are among
Z,a,s.

A basic action theory is a collection of the axioms introduced so far. Our
definition of a basic action theory slightly differs from the one in (Lin & Reiter
1997). The main difference is that we do not include the initial situation axioms
or the initial database in the action theory.

Definition 10.1.8 (basic action theory)
A basic action theory is a theory A = X U Az U Agp U Ayng where:

e Y are the foundational axioms,

o A, is a set of successor state axioms for relational fluents, one for each
fluent,

o A,y is a set of action precondition azioms, one for each action symbol,

e Aun. is a set of unique names axioms, for all pairs of action function
symbols.

Definition 10.1.9 (initial database)
An initial database is a finite set of (first order) sentences from Lgcq1c that are
uniform in Sp.

164 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

10.1.4 Situations, States and Functional Fluents

The reason for introducing the uniformity conditions into basic action theo-
ries is to ensure that the evaluation of preconditions and successor state con-
ditions depends only on the current situation. In the presence of functional
fluents, however, the uniformity conditions are not enough to guarantee that
the preconditions and successor state conditions depend only on the current
situation. It is not too difficult to give an example in which a functional flu-
ent is substituted for a parameter and results in a violation of a uniformity
condition. For example, if we substitute loc(Ball, do(throw(Ball),Sy)) for z
and Sy for s in Poss(goto(x),s) = reachable(x, s), we obtain the precondition
reachable(loc(Ball, do(throw(Ball), Sy)), So) which is not uniform in Sp. In the
presence of functional fluents, therefore, we have to be more careful and only
substitute terms that do not lead to violations of the uniformity conditions.

The fact that all conditions can be evaluated by inspection of the current
situation only implies that during a computation only a database of facts that
talk about the current situation has to be maintained. This is a typical feature
of a state based approach. The main characteristic of a state based approach is
that a successor state can be computed from the current state and the action
that is performed in that state. Because of the particular form of successor
state axioms, basic action theories also support a state based approach, with
the proviso that substitution of functional fluents does not lead to violations of
the uniformity conditions.

The uniformity conditions thus play an important role in basic action the-
ories. In general, there is an important difference between situations in the
situation calculus and states in state based approaches. Whereas a state co-
incides with a single point in (space-)time, a situation (action history) can be
much more complex. A situation s can even refer to would-be situations in
a possible history that is different from the actual one referred to by s. For
example, consider the situation do(goto(loc(Ball, do(trow(Ball), So)), So). This
situation refers to the situation resulting from going to a particular place in the
initial situation Sp. The place referred to needs to be inferred from doing another
action in situation Sp, namely the action of throwing a ball. For the evaluation
of a formula like corner(loc(Robot, do(goto(loc(Ball, do(throw(Ball), Sy)), So))
we thus have to inspect the would-be situation resulting from throwing the Ball
in situation Sp, and check if the location of the Ball in that situation is a cor-
ner, assuming that a goto action always succeeds. Due to the possibility of a
branching structure of situations we can construct such ‘non-linear’ situations
which depend on other situations in different branches in the possible histories
structure.

The example of the previous paragraph used functional fluents to illustrate
that situations are different from states. Still another feature in the situation cal-
culus, that of quantification over situations, can give rise to formulas that refer
to different situations. An example of such a formula is the following precon-
dition axiom: Poss(open(d), s) = 3s'(s = do(unlock(d, key), do(get(key), s'))).
This formula states that it is only possible to open a door if a key has been ob-

10.2. THE PROGRAMMING LANGUAGE CONGOLOG 165

tained and the door is unlocked with this key in the last two situations. Because
this precondition refers to the two previous situations, it cannot be evaluated
by inspecting the current situation only.

Summarising, in general the situation calculus offers an expressive framework
for talking about action histories. The basic action theories that we introduced
restrict this expressivity by introducing uniformity conditions, and thus provide
for a state based approach. Still, we have to be careful in the presence of
functional fluents. Because 3APL is a state based formalism, for the purpose
of bisimulating ConGolog, it is important that basic action theories are state
based. This is our main reason for excluding functional fluents.

10.2 The Programming Language ConGolog

ConGolog is a programming language based on the situation calculus. It extends
the basic action theories of the previous section with operators for constructing
complex actions. In ConGolog it is possible, for example, to specify the sequen-
tial composition of two actions, like, pickup(Block); putaway(Block). The set
of ConGolog programs is defined below. It is a subset of all the programs as
in (Giacomo et al. 2000), but includes the main programming constructs. Most
of the programming constructs below are well-known. Tests evaluate a formula
in the current situation. The nondeterministic choice of argument construct
nondeterministically selects a value for the variable z. In a prioritised parallel
program 01))d2 the execution of the left subprogram d; is preferred over that of
the right subprogram §5; the latter is executed only if §; cannot be executed.

Definition 10.2.1 (ConGolog programs)
The set of open programs P and procedures Proc is inductively defined by:

e primitive actions: a(f) € P, for a(%) of sort action,
o tests: 97 € P, for ¢ € Low,

e sequential composition: (61; d2) € P, if 01,02 € P,
o nondeterministic choice: (01 | 62) € P, if 61,02 € P,

o nondeterministic choice of arguments:
7m2.6 € P, if § € P and 2 is a variable of sort object, 2

e parallel composition: 61||02 € P, if 61,02 € P,
e prioritised parallel composition: §1)02 € P, if 61,02 € P,
e procedure call: P(f),

e procedure definition:
proc P(Z) dp end € Proc, if §p € P and all variables in dp occur in Z.

2Variables of sort action can be simulated if there are only a finite number of actions
available. An example of the use of action variables is given in (Giacomo et al. 2000).

166 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

By definition, the set of ConGolog programs is the set of closed programs in P.

A number of constructs that are included in ConGolog are not included in
the previous definition. The constructs which are defined in (Giacomo et al.
2000) but are not included in the definition above are iteration, synchronised
if-then-else, synchronised while, and parallel iteration. As far as iteration is
concerned, no expressivity is lost, since it is well-known that this construct can
be simulated by recursive procedures which are included in definition 10.2.1.
The synchronised if-then-else and the synchronised while are slight variations
of the non-synchronised ones. Both of these constructs require that the test as
well as the first action of one of the branches of the if-then-else or of the body
of the while-construct are executed in a single step. Thus in both constructs
the test and the first action to be executed next are considered to be an atomic
step that cannot be interrupted. 3APL does not have similar constructs that
are synchronised in this way. However, it would not be difficult to extend 3APL
with similar constructs, but doing so would not lead to any new or interesting
results with respect to the simulation of ConGolog in 3APL. A similar remark
applies to parallel or concurrent iteration.

10.2.1 Axiomatic Definition
of the Semantics for ConGolog

The meaning of the ConGolog programming constructs is specified by using
a transition semantics that is presented in a non-standard way. Instead of
using a formalism like the transition systems used in structural operational
semantics (Plotkin 1981), a new predicate Trans is added to the language of the
situation calculus and is used to formalise the step semantics of a program. The
predicate Trans(d, s,d', s') expresses that it is possible for program ¢ to perform
a computation step in situation s that results in a new situation s’ where ¢’
is the remaining program that still needs to be executed. The semantics of
ConGolog programs is specified by means of a set of axioms for the predicate
Trans. For each programming construct, there is an axiom that states which
computation steps the construct allows. The expression nil denotes the ‘empty’
program, and is used below as an auxiliary construct in the definition of the
operational semantics. nil is not a ConGolog program. Also notice that no
transition is associated with the nondeterministic selection of a value in a wz.d
program, but only with the joined action of selecting a value and executing
a step of subprogram §. In the axiomatic definition of Trans, the predicate
Final(0, s) is used to express that program ¢ may legally terminate in situation
s. A formal definition of Final is presented after the definition of Trans. The
definition of the semantics of (recursive) procedures is postponed until the next
section.

10.2. THE PROGRAMMING LANGUAGE CONGOLOG 167

Definition 10.2.2 (azioms for Trans) 3
Trans is inductively defined by:

e The Empty Program:
Trans(nil,s,d',s") = False
e Basic Actions:
Trans(a, s,d',s') = Poss(a,s) N6 = nil A s' = do(a, s)
o Tests:
Trans(¢?,s,8',8") = P[s]ANd =nil As' = s
e Sequential Composition:
Trans(d1; 02,5,0',8") =

(3.6 = (7; 62) A Trans(61, 5,7, "))V
(Final(61, s) A Trans(62,s,8', "))

¢ Nondeterministic Choice:

Trans(0y | 62, 5,0',s") = Trans(6y,s,0',s') V Trans(da,s,d', s")
e Nondeterministic Choice of Argument:

Trans(wx.8,5,0',s') = Ax. Trans(d, s,4', s")

e Parallel Composition:

Trans(91]|02, s,0",s") =
A4.8" = (7]|d2) A Trans(61,s,7,s')V
I4.8' = (61]|7) A Trans(62, 8,7, s")

e Prioritised Parallel Composition:

Trans (61)02, 5,0',8") =
Iv.8" = (YW2) A Trans(d1,s,, ')V
Iv.8" = (1)) A Trans(dz, 8,7,8") A—3n, s". Trans(d1, s,7, s")

3Formally, an encoding of ConGolog programs into terms of the first order language £ g;scalc
is required, as is done in (Giacomo et al. 2000). However, because the details in this chapter
- apart from the encoding itself - are almost completely the same, for notational convenience
we use the programs as in definition 10.2.1 and refer the reader to (Giacomo et al. 2000) for
the details concerning the encoding of programs into terms.

168 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

Definition 10.2.3 (azioms for Final)
The Final predicate is defined by the following set of axioms:

e The Empty Program:

Final(nil, s) = True

Basic Actions:

Final(a, s) = False

Tests:

Final(¢?,s) = False

Sequential Composition:

Final(61; 02, 8) = Final(01,s) A Final (02, s)

Nondeterministic Choice:

Final(61 | 92, s) = Final(d1, s) V Final(d2, s)

Nondeterministic Choice of Argument:

Final(nx.0,s) = 3 z.Final(9, s)

Parallel Composition:

Final (01|62, s) = Final(61, s) A Final(d2, s)

Prioritised Parallel Composition:

Final(61))62,s) = Final(d1, s) A Final(d2, s)

10.2.2 ConGolog Procedures

The semantics of ConGolog procedures is not defined in terms of replacement
of the procedure call with the procedure body, since such steps are not viewed
as transitions in the ConGolog semantics (cf. Giacomo et al. (2000)). Instead, a
second order definition of the transition predicate is given which abstracts from
these steps. A procedure call in the ConGolog semantics involves both body
replacement of a (number of) procedure call(s) and the execution of an action
or test in a single step. Only actions or tests can give rise to transitions in the
ConGolog semantics, and replacement of a procedure call with its associated
body or the nondeterministic selection of a value in a wz.d program are not
viewed as transitions.

10.2. THE PROGRAMMING LANGUAGE CONGOLOG 169

In ConGolog, nesting of procedure definitions is allowed. Therefore, it is im-
portant to keep track of the scope of a procedure definition. Nesting of procedure
definitions, however, can be considered as syntactic sugar. A pre-compiler can
be used to remove all naming conflicts and in that case we may assume global
scope again. we do not consider this facility here. The implementation of Con-
Golog also does not include this feature (cf. Giacomo et al. (2000)). In the
absence of procedure nestings, the second order definition of Trans that also
deals with procedures can be defined by

Trans(d,s,8',s'Y =V T.(p(T,46,s,8',s") = T(d,s,d',s"))

where p(T,4,s,0',s") is the conjunction of the set of axioms for Trans of the
previous section, with 7T substituted for Trans, and the following clause for
procedure calls:

T(P(aasaél:sl) = T(((SP)?JS;(SI;SI)'

In the clause for procedure calls, dp is the body of the procedure definition of

-

P(Z) and (0p)7 is that same body where the formal parameters Z have been
substituted with . This second order definition defines Trans as the smallest
set of transitions closed under the set of clauses for the ConGolog programming
constructs defined in the previous section and the clause for procedure calls
introduced in this section.

The predicate Final is defined in a similar way as the Transe predicate:
Final(6,s) =V F.(¢(F,0,s) = F(4,5))

where 1 (F, §, s) is the conjunction of the set of axioms for Final of the previous
section, with F' substituted for Final, and the following clause for procedure
calls:

F(P(E),S) = F((‘SP)%vs)

The parameter mechanism of ConGolog is a call-by-value mechanism, which,
due to the assumption that functional fluents are absent, could be somewhat
simplified compared to the definition in (Giacomo et al. 2000). In the presence
of functional fluents, the substitution of the actual parameters is slightly more

complex and should be (6p)Z . instead of simply (4 p)? . That is, functional

t|s
fluents in an actual parameter[1cerm t should be evaluated with respect to the
current situation s, and to implement this the situation s is substituted for the
constant now. After substituting s for now in parameter ¢, the parameter t[s]
is substituted in the body of the procedure at the appropriated places.

We are now in a position to explain in detail our remark above that this type
of parameter mechanism may result in an approach that is not state based, if
functional fluents are allowed. Consider, for example, the procedure defini-
tion proc serve(n) go_floor(n); turnoff (n); open end and the procedure call
serve(nearest_floor(now)). Notice that the actual parameter in the procedure

170 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

call is a functional fluent. Now suppose that the current situation is the initial
situation Sp. In that case, we get the following transition as a result of the
execution of the call:

Trans(serve(nearest_floor(now)), So,
turnoff (nearest_floor(Sy)); open, do(go_floor(nearest_floor(So)), So))

The remaining program is turnoff (nearest_floor(So)); open which must be exe-
cuted in situation do(go_floor(nearest_floor(Sy)), So). For the evaluation of the
argument nearest_floor(Sy), however, the program has to consult the previous
situation Sy instead of the current one. The call-by-value mechanism thus is not
compatible with a strictly state based approach in the presence of functional
fluents.

A second difference of the ConGolog semantics of procedures and the 3APL
semantics for achievement goals is that the second order semantics for Con-
Golog procedures abstracts from body replacement. That is, a step in which a
procedure call is replaced with its body is not considered to be a separate tran-
sition. Only actions and tests are viewed as transitions, and, as a consequence,
a procedure call P(f) that never gives rise to the execution of an action or test,
can never give rise to any transition. Formally, V&', s'.— Trans(P(%), s, ", s').
This is quite different from a semantics that associates a transition with body
replacement as is done in the semantics for 3APL. Consider, for example, the
procedure definition

proc d(n) (n =1)? | d(n —1); go_down end

and the program d(0) | true?. According to the ConGolog semantics, the only
transition this program can (always) make is the transition in which the test is
executed, because the procedure call d(0) never gives rise to the execution of an
action or test. This program thus always successfully executes and terminates
after executing the test in the ConGolog semantics. In the 3APL semantics, this
is not the case. Since body replacement also is a legal computation step, the left
branch may be selected and a body replacement may occur. The selection of the
left branch, however, results in a non-terminating computation where in each
step a body replacement is performed. In the 3APL semantics, the program thus
has a non-terminating computation in contrast with the ConGolog semantics.

Although the behaviour in accordance with the ConGolog semantics may be
preferred over that of a semantics which includes steps for body replacement that
gives rise to a non-terminating computation, there is a computational problem.
To implement the second order semantics for procedure calls, an algorithm
which decides if such a call results in the eventual execution of an action or
test is required. The problem is that such an algorithm does not exist, since
that algorithm would also solve the halting problem. In our example, non-
termination may seem easy to detect, but in general it is not possible to decide
this type of termination for arbitrary actual parameters (which may involve
complex terms). The extension of an operational style semantics in first order
logic with second order axioms in this case thus results in a non-computational
semantics.

10.2. THE PROGRAMMING LANGUAGE CONGOLOG 171

Due to the fact that ConGolog and 3APL assign different semantics to proce-
dure calls, it is not possible to construct an embedding of ConGolog into 3APL.
An embedding, however, can be constructed for a large and interesting subclass
of ConGolog procedure definitions. In particular, the set of guarded procedures
is a class of procedures that never does more than a fixed number of procedure
calls before executing an action or test. This class thus avoids the problem of
detecting termination as in the general case. This subset also can be embedded
into 3APL.

A formal definition of a guarded program is provided by means of the notion
of a rank. This notion is similar to that in (Giacomo et al. 2000), except for
one important difference. In contrast to the definition in (Giacomo et al. 2000),
our notion of rank is not dependent on the current situation. It is completely
syntactic and therefore somewhat simpler.*

Definition 10.2.4 (rank)
The rank n (n a natural number) of a program ¢ (possibly containing free
variables) is defined by the following axioms:

Rank(n,nil) = True

Rank(n,a) = True

Rank(n,$?) = True
Rank(n,61; 62) = Rank(n,d1) A Rank(n,d2)
Rank(n,d; | 82) = Rank(n,dé1) A Rank(n,ds)

Rank(n,wz.0) = Rank(n,d)

Rank(n,61||62) = Rank(n,d1) A Rank(n,d2)
Rank(n,d8,)62) = Rank(n,d1) A Rank(n,d2)

Rank(n,P(f)) = Rank(n—].,5]3?)
A ConGolog program 9§ is guarded, denoted by Guarded () iff § is of rank n

for some n, that is: Guarded(9) ¥ 5 n.Rank(n,d). This notion of guardedness is
strictly stronger than the one defined in (Giacomo et al. 2000), because it does
not depend on the current situation. As a consequence, Theorem 6 in (Giacomo
et al. 2000) holds, and we can define the semantics of procedures by a set of
first order axioms. In the sequel, we will prove an embedding result for guarded
programs which is based on the first order semantics of the previous section and
that of definition 10.2.5 below. It should be understood that the semantics of
definition 10.2.5 only applies to guarded programs (procedure definitions).

Definition 10.2.5 (first order azioms for guarded procedure calls)

Trans(P(%),s,d,s') = Tmns(5pz,s,6' s")
Final(P(1),s) = F’mal((sz, s)

4As a consequence, if a procedure call is guarded for all procedures in a program 4§, we
also know that a program has a ‘guarded evolution’; that is, any program resulting from the
execution of any number of steps of § is guarded again. This is our analogue of Theorem 7 in
(Giacomo et al. 2000).

172 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

10.3 Simulating ConGolog with 3APL

Although at first sight, ConGolog and 3APL may seem quite different languages,
the languages are similar in many respects. A short comparison of the main
features quickly reveals the similarities and differences. Since our aim is to
construct an embedding of ConGolog in 3APL, we have to find ways to deal
with the differences between the languages. In the remainder of this chapter,
we will discuss the differences between the languages and argue for particular
ways to resolve them.

The knowledge representation of ConGolog and 3APL is quite similar. Both
languages use a logical language. An initial database is used in ConGolog to
specify initial information about an environment, whereas a belief base is used
in 3APL. The beliefs of a 3APL agent are drawn from some knowledge represen-
tation language £. In principle, the choice of knowledge representation language
is free, and any formalism which allows the derivation of facts from the agent’s
beliefs can be used to program agents. For the purpose of simulating ConGolog,
it is convenient to identify the knowledge representation language £ with the
language L, of situation calculus formulas uniform in now. Subsets of these
formulas are used to represent the current situation.

The goals of a 3APL agent are plans, or imperative programs like in Con-
Golog. These goals are built from basic actions, tests, and the same program-
ming constructs as in ConGolog, apart from some minor differences in notation.
Achievement goals correspond to procedure calls of ConGolog.

Originally, 3APL does not include a construct for prioritised parallel com-
position)) (Hindriks et al. 1998, Hindriks et al. 1999a), but in the sequel we
show how to formally define a semantics for)) in a transition style semantics,
and extend 3APL with this operator.

One of the more important differences between ConGolog and 3APL is the
presence of the m operator in ConGolog and the absence of such a construct in
3APL. Correspondingly, the two languages have quite different parameter mech-
anisms. Whereas in ConGolog the 7 operator is used to nondeterministically
select a value for a variable that is bound by the operator, in 3APL tests are
used to compute values for free variables as in logic programming. Moreover,
whereas the 7 operator provides for an explicit scoping mechanism, the use of
free variables in 3APL is based on implicit scoping and involves the renaming of
free variables when procedures calls are replaced with their corresponding body.
To facilitate the construction of an embedding of ConGolog into 3APL and to
accommodate for these different styles of parameter passing, we introduce an ad-
ditional construct random(z) which, like the w2 operator, nondeterministically
selects a value for the variable z. random(z) does not introduce any additional
expressivity into 3APL and can be viewed as syntactic sugar.

A random(z) action, like a test, computes a binding for the variable z. In
contrast with arbitrary tests, however, random(z) always succeeds and nonde-
terministically returns an arbitrary binding for z. The random(z) action does
not increase the expressivity of 3APL, since it can be defined as a special kind
of test. For an arbitrary unary predicate symbol p, random(z) can be defined

10.3. SIMULATING CONGOLOG WITH 3APL 173

as: random(z) Y (p(z) V—p(x))?. The reason for introducing random(z) as an
explicit action is that we want to label this particular action as a silent step.
random(z) is used to simulate the pick operator 7, which does not give rise to
a transition. The nondeterministic selection of a value thus is considered as an
implementation detail in the ConGolog semantics, and therefore needs to be
modelled as a silent step in the 3APL semantics. As before, silent steps are
denoted by the label .

Definition 10.3.1 (transition rule for random)
Let ¢t be a ground term.

z is a variable

(random(z),0)y —=(spy (B,0) (random(t),o0)y —=o (E,0)

Finally, a practical reasoning rule in 3APL has the form 7 + ¢ | 7/, where
m, 7' are goals and ¢ is a formula from L, , the knowledge representation lan-
guage we use here. If the head = is specialised to an achievement goal p(Z) and
the guard is identified with true, then we obtain rules which correspond to the
recursive procedures of ConGolog. For our purposes, we only need simple rules
of the form p(%) « 7 (a guard that is equivalent with true is not mentioned).

10.3.1 A Labelling of the Transition Relation

For the simulation of ConGolog, it is important to keep track of the sequence
of basic actions which are executed during a computation of a program. This
information is explicitly represented by the situation arguments of the Trans
predicate in ConGolog. To represent the same information in the 3APL se-
mantics, we define a labelled transition relation. Labels are associated with a
transition and indicate whether an action or something else has been performed.

Labels are also used to distinguish between two types of transitions in 3APL.
From the point of view of the ConGolog semantics only the execution of basic
actions or tests give rise to a transition. As we will see below, 3APL associates
a transition with the expansion of a procedure call into its body and with the
execution of a random action for nondeterministically selecting values. We also
use labels to distinguish between 3APL transitions that count as transitions
in the ConGolog semantics too and the ones that do not count as such. The
latter type of transitions are singled out as silent steps. The intuition is that
these steps are not ‘visible’ in the ConGolog semantics and from the ConGolog
perspective are considered to be implementation details.

The labelling is derived from these intuitions. A transitions that corresponds
with the execution of a basic action is labelled with that same basic action. A
transition that corresponds with the execution of a test is labelled with the
special symbol €, the empty sequence. The empty sequence is used to denote
that no action has been performed, and the situation has not been changed.
Both the execution of a random action and the expansion of a procedure call
into its body are labelled with 7 to indicate that a silent step has been performed.

174 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

The labelling of composed programs are derived from the more basic ones. For
example, the label associated with the execution of a sequential composition
my; o is derived from the label that is associated with the execution of .

10.3.2 Observables and Silent Steps

As we explained above, in the semantics of ConGolog a transition is associated
with a program only if it can perform an action or test. In 3APL, however, a
transition is associated also with the expansion of a call into its body and with
the execution of a random action. For this reason, we introduced a distinction
between two types of computation steps in 3APL. Computation steps due to
the execution of a basic action or a test are distinguished from other types of
computation steps. The latter are singled out as silent steps.

For the construction of an embedding of ConGolog in 3APL, we want to
abstract from these silent steps. For this reason, we introduce a new transition
relation = for 3APL programs that is derived from the transition relation —»
defined in chapter 3. The transition relation =—> induces a new step relation.
— steps are composed of an arbitrary number of silent steps —s followed by
a single step that involves the execution of a basic action or a test.

In the definition below, * denotes the transitive closure of a relation. The
relation — is defined as the set of all finite (including empty) sequences of
— steps and v is defined as the subsequent application of the substitutions
associated with each of these steps. More formally, we have that for all v
and all n: if —, —,, ... —,, denotes a legal sequence of steps such that
Y=MY2---Yn, then —r, —, Lo — €0,

Definition 10.3.2 (abstracting from silent steps)
The transition relation é, where [is either a(f) or €, is defined by:

t d, i * a(t
LOW SRR LS

¥
€ daf i * €
=9 = Ty T4

In the sequel, we also just write = or — instead of =, or —, in case
substitutions are not important in the context.

The derived transition relation = imposes an order on the steps performed
by a 3APL agent. This order does not impose strong restrictions on the exe-
cution of an agent. It requires that an agent only performs a step if it is going
to perform an action or a test sooner or later. Since procedures are assumed to
be guarded, any translation of a ConGolog program satisfies this requirement.
It is with respect to the new step relation =—> that we are going to prove that
ConGolog can be embedded in 3APL.

The observables that are used in the embedding include both state based
as well as action-based observables. The action-based observables are used to
keep track of the actions that have been performed. The belief base of an
agent is again taken as the state based observable. (The database of a basic

10.4. OPERATIONALISING CONGOLOG 175

action theory that is associated with an agent provides the information state of
a ConGolog program.) The labels associated with the = relation are taken as
the action-based observables. The same information can be retrieved from the
situation argument in the situation calculus.

10.4 Operationalising ConGolog

In this section, we discuss a number of distinguishing features of the ConGolog
and 3APL semantics. To be able to construct an embedding of ConGolog into
3APL, a number of issues have to be dealt with. First, we discuss the semantics
of tests. From this discussion, we derive a requirement on the initial database or
belief base of an agent. Secondly, we discuss the semantics of nondeterministic
selection of a value by the 7 operator. We conclude that a domain closure - or
similar - assumption is needed to operationalise this operator. These discussions
show a difference between ConGolog and 3APL due to the different formalisms
used to define their respective semantics. The ConGolog semantics offers a
logical definition of an agent system, whereas the 3APL semantics offers a more
operational or computational definition of agent systems. The logical semantics
of ConGolog raises a number of issues as to how to operationalise or implement
it. Next, we proceed to show how to derive an update semantics for 3APL
actions from the successor state axioms provided by a basic action theory A.
And finally, we define a translation function 7 that maps ConGolog programs
to equivalent 3APL goals. In section 10.5, we then prove that the translation
function 7 defines an embedding of ConGolog into 3APL.

10.4.1 Operationalising Tests and Complete Theories

A particularly interesting difference between ConGolog and 3APL concerns the
semantics of tests. Whereas the semantics of a test in 3APL is defined in terms
of entailment by the current beliefs, in ConGolog a test is defined in terms of
truth in the current situation. The difference can be illustrated with the program
0 = (¢7; a) | (—¢?; a). In 3APL, ¢ is not always enabled because it is possible
that neither ¢ nor its negation —¢ is entailed by the current beliefs of the agent.
In contrast, J is enabled in any situation s in ConGolog and, if a is also enabled
in situation s, results in a final situation do(a, s). § is enabled simply because
either ¢ or —¢ must hold in the current situation (we may assume that ¢ is
closed since ConGolog programs are closed).

Program § of the previous paragraph is a simple example that illustrates the
difference between ConGolog and 3APL tests. The program §, however, is a
special kind of program since it does not raise the question whether or not the
left or right branch of the program should be executed. Either way, action a
must be executed. In case we replace a in both branches with different subpro-
grams, however, we do need to determine which branch to execute. Consider
the program &' = ¢?; a | =¢?; b. The ConGolog semantics implies that ¢’ is
enabled in any situation, and one of the tests in one of the branches should be

176 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

executed. Due to incomplete information about the current situation, however,
it may be impossible to decide which branch needs to be executed.

To give still another example, in case the initial database does not contain
any information about the proposition P, the ConGolog semantics does not
specify the behaviour of program P?. The logical semantics allows models in
which P? can be executed and the program terminates successfully, and models
in which P? is not enabled and the program never terminates successfully. In
contrast, the 3APL semantics in such a case precisely specifies the behaviour of
the program since we always have o |= P or o [£ P for arbitrary belief bases o
and propositions P.

The ConGolog semantics of tests thus raises the issue how to operationalise
or implement it, since, as is illustrated by the examples, the ConGolog seman-
tics does not always completely specify the behaviour of a program with tests.
A possible solution for this problem is to require that (initial) databases are
complete. A complete database o decides every sentence of a language, and as
a consequence if o = ¢ V ¢ we also have that o |= ¢ or o |= ¢ for any ¢,9. As
a consequence, the two decision problems, evaluating whether ¢ or —¢ holds in
the current situation, or o = ¢ or o = —¢, coincide. In our case, it is essen-
tial to be able to evaluate arbitrary sentences uniform in a particular situation
and therefore we require that the current database associated with a particular
situation is complete.

Definition 10.4.1 (complete theories)
Let 0 C L. o is called complete iff for every sentence ¢ in L either o = ¢ or

o=

Lemma 10.4.2 Let 0 C Ly, be a complete theory, ¢ € Loy, and S be a
closed situation term. Then, for any action theory A,

A+olSTEelS]iffo = ¢

Proof: Immediate, since ¢[S] is uniform in S and o is a complete theory. O

10.4.2 Operationalising the 7 Operator
and Domain Closure

Another interesting difference concerns the parameter mechanism in ConGolog
and 3APL. Whereas ConGolog has an explicit operator 72 which binds variables
in a program (only closed programs are ConGolog programs!), the parameter
mechanism in 3APL is based on an implicit binding mechanism and the use of
tests for computing values for free variables in a goal.

The axiomatic definition of the w operator by means of the logical existential
quantifier, however, again raises the issue of how to operationalise or implement
the operator. In the 3APL semantics, computing bindings for (free) variables is
specified as finding a suitable term to instantiate the variable. The logical se-
mantics for the 7 operator, however, does not specify any particular mechanism

10.4. OPERATIONALISING CONGOLOG 177

for implementing it. Presumably, any implementation will have to manipulate
terms and a similar mechanism as that of 3APL (based on a logic programming
like parameter mechanism) is required.

To illustrate the difference between ConGolog and 3APL, we give a simple
example. Suppose the language L, (the knowledge representation language)
only has a single constant a and no other function symbols. Furthermore, as-
sume that the initial database is =P(a). Now consider the program nz.P(z)?
and the question whether this program has a successfully terminating com-
putation. As we will see, the 3APL translation of this ConGolog program is
m = random(z); P(z)? and it is easy to show that in this example the pro-
gram 7 has no successfully terminating computation. In contrast, according to
the ConGolog semantics the program has a successfully terminating computa-
tion in case 3z.P(z), which we cannot exclude given that we only know that
—P(a) is the case. The point is that there are models which satisfy =P (a) and
Jz.P(z) for some value in the domain, but this value has no name. The logical
semantics of ConGolog thus constrains the behaviour of programs less than the
3APL semantics at the cost of not being able to prove certain useful properties
concerning, for example, the termination behaviour of a program.

An elegant proposal to operationalise the nondeterministic selection of a
value by the 7 operator is to assume domain closure. Domain closure implies
that all domain elements have names, which provides for a computational mech-
anism to implement the 7 operator by computing bindings. From now on, there-
fore, we assume that action theories imply domain closure. That is, an action
theory A now also includes a domain closure aziomlikeVz(z =t V... z = t,).

10.4.3 Some Useful Consequences

The fact that databases are required to be complete and that domain closure
is assumed has a number of useful consequences. The most important ones are
listed in this section and are used in the remainder of the chapter.

Lemma 10.4.3 Let A be a basic action theory and o C L,,, be a complete
theory. Then Final(9, S) is decided by A+0[S] for arbitrary ConGolog programs
¢ and closed situations §. That is,

A+ o[S] = Final(4, S) or
A+ o[S] = —Final(6, S)

Proof: Easy induction on the structure of §. Use domain closure for the case
that ¢ is a nondeterministic choice of argument program. O

Theorem 10.4.4 Let A be a basic action theory and ¢ C L., be a com-
plete theory. Then 36', s'. Trans(6, S, ¢', s') is decided by A + o[S] for arbitrary
ConGolog programs ¢ and closed situations S. That is,

A+ 0[S =3, . Trans(6, 5,48, s") or
A+0o[S|E -3¢, 8. Trans(4, 5,48, s")

178 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

Proof: By induction on the rank and structure of ConGolog programs. In-
duction on the rank of a program is used to deal with the case of Procedure
Calls. This case is proven by a simple application of the induction hypothesis.
The remaining cases are dealt with below.

e Basic Actions a(f): Follows from the fact that A + o[S] = Poss(a(%), S)
or A+ o[S] = ~Poss(a(f),S). The latter is implied by the specific form
of precondition axioms, the fact that ¢ is a complete theory, and lemma
10.4.2.

e Tests ¢?: Follows from the fact (lemma 10.4.2) that any sentence uniform
in S is decided by A + o[S].

e Sequential Composition d1; d2: By lemma 10.4.3, Final(d1,.5) is decided.
Then apply the induction hypothesis.

e Nondeterministic Choice 47 | d2: Use induction hypothesis.

e Nondeterministic Choice of Argument nz.5: Use domain closure and in-
duction hypothesis.

e Parallel Composition &;]|d2: Use induction hypothesis.
e Prioritised Parallel Composition d;))d2: Use induction hypothesis.

O

For an arbitrary term S of sort situation, as a notational shorthand, we
stipulate that do(e, S) is identical to S (where € denotes the empty sequence;
recall that € is the label associated with the transition for a test in 3APL).

Theorem 10.4.5 Let A be a basic action theory, ¢ C L0, be a complete
theory and a be either € or a basic action. Then any closed sentence of the form
Trans(6, S,0’, do(a, S)) is decided by A + o[S]; that is, either:

A+ o[S] E Trans(4, 5,8, do(a, S)) or
A+ o[S] E ~Trans(4, 5,4, do(a, S))

Proof: By induction on the rank and structure of ConGolog programs. The
proof is completely analogous to the proof of theorem 10.4.4, except for the case
of prioritised parallel composition. In the latter case, use theorem 10.4.4. O

10.4.4 Basic Actions, Progression and Belief Bases

A third difference between ConGolog and 3APL is that the operational seman-
tics of 3APL explicitly refers to states called belief bases whereas the axiomatic
definition of the predicate Trans only mentions situations which denote such a
state. In the operational semantics for 3APL, belief bases are updated by basic
actions. The semantics of basic actions in ConGolog, however, is provided by
successor state axioms in a given basic action theory.

10.4. OPERATIONALISING CONGOLOG 179

For our purposes, we need a way to link successor state axioms to an update
semantics for actions. This link is provided by the work of Lin and Reiter on the
progression of databases (Lin & Reiter 1997). They define a progression operator
for (relatively) complete basic action theories. This progression operator can be
used in this context to specify the transition function T for 3APL basic actions.

Definition 10.4.6 (progression operator)
The progression operator Prog is defined by:

Prog(c,e) = o,
Prog(o,a(?)) =
{P(#) | o |= P(f) and P(%) is a situation-independent sentence} U
{=P(%) | o }=-P(%) and P(%) is a situation-independent sentence} U
{F(t,now) | o = ®p(#,a(¥), now)} U
{—~F(#,now) | o= -®p(t,a(f), now)}

By theorem 3 in (Lin & Reiter 1997), the progression operator as defined
in definition 10.4.6 yields a progression of a complete belief or data base o
since complete data bases are special cases of relatively complete databases and
because we assume domain closure. A progression of a database by performing
an action thus provides the update semantics of that action. By theorem 1 in
(Lin & Reiter 1997), we then know that any sentence ¢[do(a, S)] uniform in
do(a, S) is implied by A + o[S] iff A + o[do(e, S)] also implies yp[do(a, S)].

We can use the progression operator to specify a transition function for basic
actions in 3APL. We define an update action in 3APL for every basic action A
in the theory A. The semantics of basic actions in 3APL is given by a semantic
function 7 which defines in which states an action is enabled and what the
resulting state of executing the action in that particular state is. 7 is defined
as a partial function, which incorporates both the information of precondition
and successor state axioms.

Definition 10.4.7 (semantic function T)
Let 0 C L0, be a complete theory, and S be a closed term of sort situation.
Define for every action a(%) its update semantics by:

T(a(?),0) = Prog(o,a(f)) if A+0[S] | Poss(a(?), S),
T (a(?),0) is undefined otherwise.

Because instances of action precondition axioms must be uniform in a situa-
tion S, it follows by lemma 10.4.2 that 7 is well-defined. The main point of this
definition is that it shows how to reduce situations (action histories) to states
for complete databases.

10.4.5 Translating ConGolog programs into 3APL agents

Now we have set the stage, we can define a translation function 7 from ConGolog
programs to 3APL agents. The mapping 7 defined below is defined by induction

180 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

on the structure of programs. One of the more interesting cases is the translation
of programs of the form 7.6 which are mapped onto a sequential 3APL program
random(z); 7(8). The 7 operator is simulated by the special action random in
3APL, and the explicit binding by the m operator is replaced by the implicit
binding mechanism in 3APL.

However, for this mapping to work we need to make sure that different
occurrences of 7 operators are mapped onto different random actions even if
they bind the same variable. That is, in a ConGolog program two occurrences
of 7z need to be mapped onto different random actions, say random(z) and
random(y). The reason is that in 3APL an implicit binding mechanism is used
and the first occurrence of a variable implicitly binds all later occurrences. If
different occurrences of the same 7 operator are mapped onto the same random
action, this might therefore result in bindings between variables that are not re-
lated in the ConGolog program. For this reason, we assume that the translation
function T maps different occurrences of the © operator onto different random
actions.

Definition 10.4.8 (translation function 7)
The translation function 7 is inductively defined by:

e 7(nil) = E,

o 7(a(1) = (4);

(¢7) =
(61 52) (‘51); 7(02),

o 7(d1 | 62) = 7(61) + 7(d2),
(rz
(
(
(P

L

[]
B

wz.0) = random(z); 7(9),

01 102) = 7(61)|7(d2),

d1)02) = 7(61))7(d2),
(@) = p(?),

e 7(proc P(Z) dp end) = p(Z) « 7(dp).

[]
B

o T

o T

In the definition of 7, for simplicity, we did not incorporate the fact that
7 needs to map different occurrences of wz operators onto different variables
in a 3APL program (cf. the clause for 7z.§). Technically, the assumption that
7 maps different occurrences of a wx operator onto different random actions
can be realised as follows. An infinite set V of variables can be associated
with the 7 function. The idea is that any occurrence of a 7 operator then
is mapped by 7y onto a random(z) action such that z € V. In case of a
composed program, the set ¥ needs to be partitioned in two (infinite) subsets.
For example, 7y (81; d2) = 7v,(01); Tv,(d2) such that V = V3 U Vo, Vi N
Vo = @, and both V7 and V5 are infinite. The details, however, are not very

10.5. EMBEDDING CONGOLOG IN 3APL 181

interesting and we do not provide them here. Throughout, we therefore assume
that variable renaming is applied where necessary and appropriate. Recall that
the framework for bisimulation introduced in chapter 8 explicitly allowed for
steps that compensate for small syntactic differences. So-called a-steps were
introduced for this purpose. Below, we will only mention that it is necessary to
perform such steps at the most relevant places and assume implicitly that such
steps are performed everywhere else when needed.

Finally, note that a ConGolog procedure is translated to a 3APL rule without
a guard. Also notice that the translation function 7 is defined on the set of open
programs P, and not just on the set of closed ConGolog programs.

10.5 Embedding ConGolog in 3APL

The embedding of ConGolog in 3APL now proceeds in three stages. First,
we show how to embed ConGolog programs without procedure calls or (priori-
tised) parallel composition in 3APL. In Section 6, we then extend this result
to programs with procedure calls (this proof involves induction on the rank of
a program). Finally, in section 7 we discuss the special problems associated
with simulating parallel ConGolog programs in 3APL and show how to solve
these problems. The main result, however, is established in this section where
we prove an embedding result for all the basic constructs of ConGolog. We
begin by showing that the concept defined by the Final predicate (for arbitrary
ConGolog programs) coincides with termination of the corresponding 3APL 7-
translation of the program modulo a number of silent steps.

Lemma 10.5.1 Let 0 C L,y be a complete theory, ¢ € Loy, and S be a
closed situation term. Then, for any action theory A and ConGolog program &
we have that:

*

A+ o[S] = Final(s, S) iff (r(5),0) - (E,0)

Proof: Easy proof by induction on the rank and structure of a program. Use
domain closure for the case that ¢ is a nondeterministic choice of argument
program. [

The main embedding result is the following theorem, which shows that the
transition relation defined by the Trans predicate bisimulates with the step
relation =>.

Theorem 10.5.2 (bisimulation theorem)
Let § and &' be (closed) ConGolog programs, o C L4, be a complete theory,
and S be a closed term of sort situation. Then:

A+ 0o[S] = Trans(4,5,48', do(w, S))
iff
(1(8),0) = (1(8"), Prog(o, a))

182 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

Proof: We prove the theorem by induction on the structure of programs.

Basic Actions: § = a(f):

A+ 0[S] | Trans(a(?), 5,8, do(a(?),)
iff
(a(D),0) 24 (+(8"), Prog(o,a(7)))
Proof:

(=) By definition of the Trans predicate, we have A + o[S] |= Poss(a(%),) A
8" = nil. By definition of 7 and 7, we then have 7 (a(%),0) = Prog(a, a(f))

and 7(nil) = E. From this we obtain (a(f), o) :1 (T(d"), Prog(o,a(t))).

(<) By the transition rule for basic actions, we must have that 7 (a(?),0) =
Prog(o,a(t)). This implies that A + o[S] |= Poss(a(%), §). Tt follows from
the definition of Trans that A + o[S] = Trans(a(f), S, nil, do(a(f), S)).

Tests: § = ¢7:
A+ 0[S] & Trans(4?,8,68', do(e, S)) iff (¢?,0) == (1(8'),0)

Proof:

(=) By definition of Trans, we have A + o[S] E ¢[S] A §' = nil. Since ¢[S]
is closed and uniform in S, and 7(nil) = E, by lemma 10.4.2 we obtain
o |E 9@, which is the required premise of the transition rule for tests.

(<) By the transition rule for tests, we must have o |= ¢ since ¢ is closed, and
so we also have that A + o[S] |= ¢[S] by lemma 10.4.2. It follows from
the definition of Trans that A + o[S] | Trans(¢?, S, nil, do(e, 9)).

Sequential Composition: § = d1; da:
A+ o[S] = Trans(61; 62, 5,8, do(a, S))
iff
(1(01; 82),0) = (7(8"), Prog(o,))
Proof: By the induction hypothesis, we may assume that we know that:
A+ 0[S] E Trans(6y1, 8,0}, do(a, §)) iff (1(6,),0) == (1(8}), Prog(o, @))
and

A+ 0[S] = Trans(6s, 8,85, do(a, S)) iff (1(82),0) == ((6}), Prog(o,))

10.5. EMBEDDING CONGOLOG IN 3APL 183

(=) We prove the implication by reasoning by cases: (which is allowed by
theorem 10.4.5)

1. First, suppose A+0o[S] E 3.6 = (v; d2) A Trans(d1, S, 7, do(a, S)).

This implies there is a ConGolog program 47 such that A + o[S] E
0" = (813 62) A Trans(6y1, 5,01, do(a, S)). By the induction hypoth-
esis, we then obtain: (7(81),0) == (7(d}), Prog(o,a)). From this
and the transition rule for sequential composition, we conclude that
(1(61; 82),0) == (1(8}; &), Prog(c,a)). Since §' = (&; d2), we
obtain: (7(61; 02),0) == (1(8"), Prog(c, a)).

. Secondly, suppose that we have A + o[S] E —3v.8' = (y; d2) A

Trans(d1, 5,7, do(a, S)). By the axiomatic definition of Trans for ; ,
we then know that A+0[S] E Final(61, s) A Trans(d2, S, 4", do(a, S)).
Since A + o[S] | Final(d1,S), by lemma 10.5.1, we conclude that
(1(61),0) == (E, o). By means of the induction hypothesis, we then
obtain that (1(82),0) == (7(d"), Prog(o, @)). By the definition of =
we then may add the silent steps of §; in front of the computation
involving > and we obtain: (7(61; d2),0) == (7("), Prog(c, a)).

(<) From (1(61; 82),0) == (7(d"), Prog(c, @)} it follows that: (i) (7(d;),0) ==
(7(8), Prog (o, @) for some 8}, or (ii) (r(82),0) == (7(d"), Prog(c,a)) and
(1(01),0) == (E,0). In the first case, simply apply the induction hy-
pothesis and note that ¢’ must be of the form d}; d2 to conclude that
A+ 0[S] = Trans(d1; 92, 5,6, do(a, S)). In the second case, use lemma
10.5.1 to obtain A + o[S] = Final(d1,S) and apply the induction hypoth-

esis.

Nondeterministic Choice: § = §; + do:

Proof:

A+ 0[S] E Trans(6, | 82, 8,9, do(a, S))
iff
((61) +7(02),0) = (7(&"),0")

A+ o[S] E Trans(d1 | 82, S,0', do(e, S))

By the axiomatic definition of Trans this is equivalent to:

A+ o[S] E Trans(61,5,4', do(a, S)) V Trans(da, S, 4, do(a, S))

Now, by theorem 10.4.5 and the fact that o is complete, the latter is equivalent

to:

A+ o[S] E Trans(61, 5,4, do(a, S)) or
A+ o[S] E Trans(62, S,4', do(a, S))

184 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

This in turn, by the induction hypothesis, is equivalent to:
(1(61),0) = (7(8"), Prog(o, a)) or (7(d2),0) = (7(&'), Prog(o,)
Finally, this is equivalent to:

(1(01) + 7(82),0) == (1(8"), Prog(o, a))

Nondeterministic Choice of Argument: § = nz.8":

A+ o[S] = Trans((rz.8"),8,8",do(a, S)) iff (r(wz.8'),0) == (7(8"),0")

Proof:
(=)
A+ o[S] E Trans((rz.0"),S,6", do(a, S))
By the axiomatic definition of Trans this is equivalent to:
A+ 0[S E Jz.Trans(d', S,4", do(a, S)))

Because of domain closure, there is a ground witness ¢ for 3z and we
obtain:

A+ o[S] E Trans(6'{z =t},5,§", do(w, S))
By the induction hypothesis, we then have that
(r(6'{z = t}),0) = (1(8"), Prog(a,0))

From this, and because random(z) gives rise to a silent step, we can then
derive:

(random(z); 7(8"),0) == (1(8"),0")
By definition of the translation function 7, we obtain:

(r(rz.8"),0) == (1(8"), ")

(<) From
(random(z); 7(8'),0) == (1(6"), Prog(o, a))
it follows that:
(r(0{z = t}),0) = (7(8"), Prog(o, a))

for some t, since random(z) gives rise to an silent step. By the induction
hypothesis, we then obtain:

A+ 0o[S] E Trans(6'{z = t},S,48", do(a, S))

10.6. PROCEDURES 185

By the semantic definition of 3z we then can derive:
A+ o[S] E 3z.Trans(d', S,0", do(w, S))
And finally, by the axiomatic definition of Trans this is equivalent to:

A+ o[S] E Trans((rz.0"),S,6", do(a, S))

As a corollary, we obtain that ConGolog programs (without procedures or
parallelism) and the translations of these programs into 3APL compute the
same belief or data bases and compute these belief bases by executing the same
sequence of actions:

Corollary 10.5.3 Let A be a basic action theory with initial database o[So],
and a be a sequence of basic actions.

A+ o[So] E Trans* (4, S, nil, do(a, So))
iff
(7(6),0) =" (E, Prog(o,a))

where Trans* denotes the transitive closure of Trans.

10.6 Procedures

In this section, we extend the bisimulation result to include programs with
procedures. The proof proceeds by induction on the rank and structure of
a program. The proofs for programs without procedure calls are essentially
the same as in the previous section. The only interesting new case is that of
simulating a procedure call.

Procedure Call: § = P(%):

A+ 0[S] | Trans(P(f), 8,0, do(a, §)) iff (r(P(f)),0) == (1(8'),0")

Proof: We proceed by induction on the rank of a program. The base case,
programs with rank 0, coincides with programs without procedure calls, and is
proven in the previous section. Assuming that we know the simulation result
holds for all programs of rank n, we now show that it also holds for programs
with rank n + 1:

(=) Suppose P(%) is of rank n+1 and A+ o[S] = Trans(P(?), S, 8, do(a, S)).
Then we also have A+0[S] = Tmns(ép;’, 5,4, do(a, S)) where (5p§ is the
body of procedure P with formal parameters replaced with actual param-
eters. Moreover, if P is of rank n + 1, then Jp is of rank n. Then, by the
induction hypothesis, we obtain: <T(5P§),U) == (1(d"), Prog(o,a)). By

[e]

the transition rule for rule application, we then derive: (r(P(f)),0) ==

186 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

(1(8"), Prog(o,a)), because application of a rule is an silent step. Notice
that in particular in a rule application step of 3APL, variables may have
been renamed. This may result in a mismatch between the variables intro-
duced by the renaming mechanism of 3APL and the translation function
7. However, to compensate for such small differences, we may perform
so-called a-steps that rename variables.

(<) Suppose (7(P(f)),0) == (7(8"), Prog(c,)). Then there must be some
rule suchdthat: (r(P(f)),0) — (t(dp7),0). Because P(%) is of rank
n+1, 6p7 must be of rank n. By the induction hypothesis, we then have:
A+o[S] E Tmns(ép?, S,d', do(w, S)). From this we immediately obtain:
A+ 0[S] £ Trans(P(%), 8,6, do(e, S)).

O

10.7 Parallel Composition

In this section, we extend the bisimulation result to arbitrary ConGolog programs
including parallel as well as prioritised parallel programs. To simulate prioritised
parallel programs 3APL is extended with the)) operator and we show how to
define the semantics of this operator in a transition style semantics below. The
parallel composition of goals is included in 3APL. The semantics of the parallel
operator || in 3APL, however, differs from that of the ConGolog semantics.
Because of this difference, the main issue in extending the simulation result to
parallel programs is to prove that the two semantics are equivalent with respect
to some appropriate observation criterion. That is, we must show that parallel
programs in 3APL and ConGolog compute the same things.

The difference in the semantic definitions of the parallel operator concerns
the ordering of computation steps of a 3APL (parallel) program. A 3APL pro-
gram can perform silent steps which do not have a counterpart in the ConGolog
semantics. The problem concerns the order in which these silent steps are per-
formed. This can be illustrated as follows: given a parallel program 4|2, in
the ConGolog semantics only d; or d2 can be transformed in a single step but
not both, while according to the 3APL semantics as defined by = both sub-
programs may perform silent steps before an action or a test (a ‘real’ ConGolog
step) is performed. For example, the ConGolog program

procP()
a

end

proc(Q()
b

end
POIQO

can execute either the left or right branch of the parallel composition resulting in
respectively Q() and P() as the remaining programs for execution. The program

10.7. PARALLEL COMPOSITION 187

is translated to p()||¢() in 3APL (plus translations of the procedure definitions
to rules). According to the = semantics which abstracts from silent steps, this
program, however, can result in either p(), ¢(), a or b after performing one =
step. The latter two new possibilities result from the fact that with respect to
the = semantics a silent step may have been performed in which the procedure
is expanded into its body before an actual step (not a silent step) is performed.
The = transition semantics thus allows silent steps of both subprograms to be
performed before an actual step is performed in either one of them, whereas we
would like to make sure that only computation steps associated with one of the
subprograms are performed.

To solve this problem we show that the order of performing silent steps
does not matter. For this purpose, we introduce a new transition relation ~
which imposes a restriction on the order in which silent steps are performed in
a parallel program and show that ~» and — are equivalent in the sense that
they compute the same belief bases (our observation criterion).

The transition relation ~~ is derived from =—>. In the definition of the ~~
transition relation also a specification of the semantics of the prioritised parallel
operator is given. The transition rule for prioritised parallel composition 7y)7y
uses a negative premise to specify that the execution of 7y is only allowed if
m cannot perform an action or test after a finite number of silent steps. A
justification for this type of transition rule can be found in (Groote 1993).

Definition 10.7.1 (transition relation ~)
Let Parfree denote the set of 3APL programs without occurrences of parallel
operators.

(m,0) :l>,y (7',0"), m € Parfree

(m,0) ~oy (', 0")

1
<7Tla U) My <77113 UI)

1
(m1; T2, 0) ~oy (W5 T2y, 07)

l l
<7T150> My <7r{70'l) (7T2,0') My <7i"2,0'l)
l l
(m1 + T2, 0) ~y (7], 07) (m1 +72,0) ~y (m5,0")
l l
(1, 0) vy (1, 07) (2, 0) ~y (m3,0")
! l
(mil|me, 0) ~y (willm2y,0) (millm2, o)~y {1y, of)

l
(m1,0) ~y (71,07)

(T2, 0) ~on (T4)72y, 0")

188 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

Vi, 0!, 0, m((m1,0) P (n1,0")) and (w5, 0) v, (mh,0")

(m W2,) " (my)h, o)

The following theorem provides the basis for our simulation result. It proves
that the transition relation ~» is equivalent to = with respect to computed
belief bases, which is used as the observation criterion here for programs without
prioritised parallel composition (which is not defined for =).

Theorem 10.7.2 Let 7 be the translation of a ConGolog program J without
prioritised parallel composition, i.e. # = 7(4). Then:

(m,0) =" (E,0") iff (m,0) ~* (E,0")

Proof:

(=) By induction on the length of the computation and the structure of 7. The
base case, a computation of length 1, is trivial, since in that case 7 must
be a(?) or ¢?. So, suppose for all computations of length n the theorem
holds. We must prove it for computations of length n + 1.

e Basic Actions, Tests: Easy.
¢ Random Action: Is not a translation of a ConGolog program.

Sequential Composition: Easy; partition computation into == steps.

Nondeterministic Choice: Easy.

Parallel Composition: m = my ||m2.

Take the first m steps of the computation such that the mth step is a
a(f) or ¢? step and all previous steps are silent steps. The mth step is
either performed by 71 or by m2. Suppose it is performed by 71 (the
other case is analogous). By rearranging the first m steps such that
all steps performed by 7r; are performed first - in the same order - and
then performing the (silent) steps performed by w2, we still have a
legal computation which does not change the computed result (since
the steps from 7 only expand procedure calls or randomly guess
values). Now, the sequence of 7, steps correspond to one = step
by definition. The remaining computation is at least one computation
step shorter, and thus we are done.

e Procedure Call: Use induction hypothesis.
(<) Trivial.
O

Now we are able to extend the simulation result to (prioritised) parallel
programs. To prove this extended simulation result, we use the new transition
relation ~. The proof for all cases except for parallel and prioritised parallel
composition are analogous to the proofs of previous sections and are omitted
for this reason. Theorem 10.7.3 shows that the transition relation defined by
Trans for arbitrary ConGolog programs bisimulates with the step relation ~.

10.7. PARALLEL COMPOSITION 189
Theorem 10.7.3 (bisimulating parallel and prioritised parallel composition)

Parallel Composition: § = §;|da:

A+ o[S] E Trans(61|62, 5,8, do(a, S))
iff
(T(81)|7(02), 0) ~ (7(8"), Prog(a,)

Proof: Note that the base case, i.e. (m, o) ~ (7',0') because (m,0) =
(', 0"}, has been proven in previous sections. We now deal with the remaining
cases.

(=) Assume A+ o[S] |= Trans(d1]|92, S,4', do(ex, S)). We need to distinguish
two cases, the case where d; is executed and the case where d, is exe-
cuted. Because of symmetry, we only give the details for one of these
cases. So, assume: A + o[S] E 37v.8' = (7]|02) A Trans(61, S, 7, do(a, S)).
As a consequence, there is a ¢] such that: A+ o[S] E &' = (d1]|d2) A
Trans(61,5,9], do(a, S)). Then, by the induction hypothesis, we obtain:
(1(61),0) ~ (1(8}), Prog(c,a)). By definition, we then have:
(1(81)[17(82), 7) * (7(8"), Prog(a, a)).

(<) Assume (7(61)||7(82),0) ~ (T(d"), Prog(,a)). In that case, by definition
10.7.1 we know that either (7(d;),) (r(8}), Prog(c,)) for some 0}

I

2

such that &' = 6}||02, or (1(82),0) == (7(33), Prog(c, a)) for some &} such
that &' = d1]|6%. Then apply the induction hypothesis.

Prioritised Parallel Composition: § = 6;))d2:

A+ o[S] = Trans(6,)02, 5,8, do(a, S))
iff
(T(6:1)02),0) ~ (7(&), Prog(o, @)

Proof:

(=) We prove the implication by reasoning by cases: (which is allowed by
theorem 10.4.5)

1. First, suppose A+ o[S] = 3v.0' = (Y)d2) A Trans(d1, S, 7y, do(a, S)).
Suppose ¢ is a ConGolog program which satisfies this equation. It
then follows from the induction hypothesis that we have (7(8;),0) ~=
(1(8}), Prog(o,a)). By the transition rule for prioritised parallel
composition of definition 10.7.1, this implies that (7(81)ds),0) ~=
(1(0"), Prog(o, o).

190 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

2. Secondly, assume we have that A + o[S] E —3v.8' = (Y)da2) A
Trans(01,S,v,do(a, S)). By the axiomatic definition of Trans, we
then have that A+0[S] | 3v.0" = (61)Y)A Trans(da, S, v, do(a, S))A
=3n,s". Trans(d1,5,n,s"). By the induction hypothesis, we then
have that (7(02),0) ~» (7(d}), Prog(o,a)) for some &} such that
0" = 01))05. Moreover, there is no transition ~» corresponding to
01- By the transition rule for prioritised parallel composition, we

then have that (7(d;)d2),0) ~ (1(8'), Prog(o, a)).

(<) From (7(8;)82),0) ~» (7(d"), Prog(c,)) it follows that: (i) (r(61),0) ~»
(7(8}), Prog(c,)) for some &) or (i) (1(d2),0) ~ (7(3}), Prog(s,a)) for
some ¢4 and there is no transition associated with ;. In both cases, use the
induction hypothesis to conclude A+ o[S] |E Trans(61)d2, S,d', do(a, S)).

Finally, we obtain that arbitrary ConGolog programs and the translations
of these programs in 3APL compute the same belief or data bases and compute
these belief bases by executing the same sequence of actions. The extended
version of corollary 10.5.3 now includes all ConGolog programs.

Corollary 10.7.4 Let A be a basic action theory with initial database o[Sy],
and a be a sequence of basic actions.

A+ o[S] E Trans* (6, So, nil, do(a, So))
iff
(7(6),0) %" (B, Prog(0,a))

O

10.8 Discussion

ConGolog is a programming language which extends basic action theories in the
situation calculus with operators for building composed programs. The logical
perspective of the situation calculus offers a very expressive framework for spec-
ifying agents. Basic action theories provide a framework for specifying actions
and offer a solution to the frame problem. The logical semantics of ConGolog,
however, does not straightforwardly provide an implementation language, in
contrast with the operational semantics of 3APL. The embedding result of this
chapter shows that one option to implement (a restricted version of) ConGolog
is to embed the language into 3APL. Another important feature of the logi-
cal semantics is that in the presence of functional fluents, situations cannot be
identified with states.

In contrast, with respect to 3APL a clear distinction is made between the
programming language and a programming logic (cf. Hindriks et al. (n.d.)) for
proving properties of 3APL agents. The agent language 3APL abstracts both

10.8. DISCUSSION 191

from the knowledge representation that agents use and a concrete specification of
actions. The embedding result shows that basic action theories in the situation
calculus can be used to specify actions and to derive an update semantics for
3APL actions.

Both languages emphasise different aspects of agent computing. ConGolog
is presented as a high-level programming alternative to planning. The focus
is on extracting a legal action sequence from a nondeterministic program. A
ConGolog program thus is seen as a vehicle for computing a situation (action
history). As in planning, finding a legal action sequence requires search and this
explains the use of a backtracking model of execution. The backtracking model
is inherited from logic programming, which is used to implement ConGolog
(Giacomo et al. 2000).

With respect to 3APL, the focus is on computing belief bases. Upon ter-
mination a 3APL program returns a belief base. The execution model that is
proposed is that of the ‘imperative flow of control’. The basic feature of this
model is that a commitment to a choice is made as soon as an action has been
executed. Because of the embedding result, it is clear, however, that neither the
semantics of ConGolog nor that of 3APL dictates the use of one or the other
model of execution (cf. also Giacomo & Levesque (1998)).

Finally, the construction of an embedding of ConGolog into 3APL also iden-
tified several common and distinguishing features of the formalisms used to
specify a semantics. Basically, the embedding result indicates that an axiomatic
definition in an extended predicate logic like the situation calculus and a Plotkin-
style transition semantics result in more or less equivalent semantics. The use of
a logical semantics specified in the situation calculus, however, requires careful
consideration of a number of issues, like the incompleteness of databases and do-
main closure. Moreover, the logical semantics seems suitable for proving partial
correctness, but raises some doubts as to its usefulness for proving termination
properties.

192 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

Part 111I:

Agent Programming
with Declarative Goals

In the first two parts, the metaphor of intelligent agents has been made precise by
providing a programming language with a formal semantics and by comparing this
language with other proposals for agent languages in the literature. A different
approach to clarify the concept of an intelligent agent is to design agent logics. In
the literature, a range of proposals of - mainly - modal logics for the specification of
agents have been made. These logics typically define the core notions associated
with intelligent agents like belief, goal, intention, etc. (Rao 1996b, Linder et al.
1996, Cohen & Levesque 19904, Cohen & Levesque 1995).

The relation of these logics with the programming languages that we discussed
so far has not been studied yet. As was shown in part II, the programming lan-
guages AGENTO, AgentSpeak(L), ConGolog and 3APL are closely related agent
programming frameworks. The terminology may differ from case to case, but each
of these programming languages define agents in terms of beliefs, goals, plans and
capabilities. These agent languages thus are based on similar notions as those de-
fined by the logical approaches. However, there is one notable difference. In agent
logics, a goal is a declarative concept, whereas in the programming languages that
we discussed goals are defined as sequences of actions or plans. Whether they
are called commitments (AGENTO), intentions (AgentSpeak(L)), or goals (3APL)
makes little difference: Each of these notions are structures built from actions and
therefore similar in nature to plans. With respect to ConGolog, a more tradi-
tional computer science perspective is adopted, and the corresponding structures
are simply called programs. The type of goal included in these languages may also
be called a goal-to-do and provides for a procedural perspective on goals.

In part ITI, we aim to bridge this gap between agent logics and agent pro-
gramming languages. It is our aim to incorporate declarative goals in an agent
language. To this end, we introduce a new agent programming language called
GOAL. GOAL provides a concrete proposal to bridge the gap between theory and
practice. The GOAL framework offers a complete theory of agent programming in
the sense that it provides both for a programming framework and a programming
logic for intelligent agents.

194 CHAPTER 10. AN EMBEDDING OF CONGOLOG IN 3APL

CHAPTER 11

The Agent Language GOAL

A long and lasting problem in agent research has been to close the gap be-
tween agent logics and agent programming frameworks. The main reason for
this problem of establishing a link between agent logics and agent program-
ming frameworks, we believe, is that agent programming frameworks have not
incorporated the concept of a declarative goal. Instead, programming frame-
works have mainly focused on plans or goals-to-do instead of the end goals to be
realised. These declarative goals are also called goals-to-be. In this chapter, a
new programming language that is called GOAL (for Goal-Oriented Agent Lan-
guage) is introduced. The motivational component of GOAL agents consists of
declarative goals.

The fact that GOAL includes declarative goals distinguishes this language
from other agent languages like AGENTO, AgentSpeak(L), ConGolog and 3APL.
In this respect, it is also different from the PLACA language (Thomas 1993),
a successor of AGENTO0. PLACA also focuses more on extending AGENTO to
a language with complex planning structures than on providing a clear theory
of declarative goals of agents as part of a programming language and in this
respect is similar to AgentSpeak(L) and 3APL. The value of adding declarative
goals to agent programming lies both in the fact that it offers a new abstraction
mechanism as well as that agent programs with declarative goals more closely
approximate the intuitive concept of an intelligent agent. To fully realise the
potential of the notion of an intelligent agent, a declarative notion of a goal,
therefore, should also be incorporated into agent programming languages.

First, the basic ideas behind the programming language GOAL are intro-
duced. To provide GOAL with an operational semantics, a number of issues need
to be solved. In particular, the interaction between the goal and belief bases
of a GOAL agent must be clarified in a satisfactory way. For this purpose, the
notion of a commitment strategy - one of the main theoretical insights gained
from research on agent logics - is used. A commitment strategy explains the
relation between beliefs and goals and can be used to construct a computational
semantics for GOAL. Finally, an example GOAL agent is presented.

195

196 CHAPTER 11. THE AGENT LANGUAGE GOAL

11.1 The Programming Language GOAL

In this section, we introduce the programming language GOAL. The program-
ming language GOAL is inspired by work in concurrent programming, in par-
ticular by the language UNITY designed by Chandy and Misra (Chandy &
Misra 1988). The basic idea is that a set of actions which execute in parallel
constitutes a program. However, whereas UNITY is a language based on as-
signment to variables, the language GOAL is an agent-oriented programming
language that incorporates more complex notions such as belief, goal, and agent
capabilities which operate on high-level information instead of simple values.

As in most agent programming languages, GOAL agents select actions on
the basis of their current mental state. A mental state consists of the beliefs and
goals of the agent. However, in contrast to most agent languages, GOAL incor-
porates a declarative notion of a goal that is used by the agent to decide what
to do. Both the beliefs and the goals are drawn from one and the same logical
language, £, with associated consequence relation |=. An agent thus keeps two
databases, respectively called the belief base and the goal base. The difference
between these two databases originates from the different meaning assigned to
sentences stored in the belief base and sentences stored in the goal base. To
clarify the interaction between beliefs and goals, one of the more important
problems that needs to be solved is establishing a meaningful relationship be-
tween beliefs and goals. This problem is solved here by imposing a constraint on
mental states that is derived from the default commitment strategy that agents
use. The notion of a commitment strategy is explained in more detail below.
The constraint imposed on mental states requires that an agent does not believe
that ¢ is the case if it has a goal to achieve ¢, and, moreover, requires ¢ to be
consistent if ¢ is a goal.

Definition 11.1.1 (mental state)

A mental state of an agent is a pair (o,v) where o C L are the agent’s beliefs
and v C L are the agent’s goals and ¢ and ~ are such that for any ¢ € v we
have:

e ¢ is not entailed by the agent’s beliefs (o £ ¢),
e ¢ is consistent ([~ —¢), and
e 0 is consistent (o [~ false).

A mental state does not contain a program or plan component in the ‘classi-
cal’ sense. Although both the beliefs and the goals of an agent are drawn from
the same logical language, as we will see below, the formal meaning of beliefs
and goals is very different. This difference in meaning reflects the different fea-
tures of the beliefs and the goals of an agent. The declarative goals here are
best thought of as achievement goals. That is, these goals describe a goal state
that the agent desires to reach. Mainly due to the temporal features of such
goals many properties of beliefs fail for goals. For example, the fact that an

11.1. THE PROGRAMMING LANGUAGE GOAL 197

agent has the goal to be at home and the goal to be at the movies does not allow
the conclusion that this agent also has the conjunctive goal to be at home and
at the movies at the same time. As a consequence, less stringent consistency
requirements are imposed on goals than on beliefs. An agent may have the goal
to be at home and the goal to be at the movies simultaneously; assuming these
two goals cannot consistently be achieved at the same time does not mean that
an agent cannot have adopted both in the language GOAL.

With respect to GOAL, we assume that the language £ used for representing
beliefs and goals is a simple propositional language. As a consequence, we do not
discuss the use of variables nor parameter mechanisms. Our motivation for this
assumption is the fact that we want to present our main ideas in their simplest
form and do not want to clutter the definitions below with too many details.

The language L for representing beliefs and goals is extended to a new lan-
guage L which enables us to formulate conditions on the mental state of an
agent. The language Ly consists of so called mental state formulas. A mental
state formula is a boolean combination of the basic mental state formulas Bg,
which expresses that ¢ is believed to be the case, and G¢, which expresses that
¢ is a goal of the agent.

Definition 11.1.2 (mental state formula)
The set of mental state formulas Ly is defined by:

o if p € L, then Bg € Ly,
e if ¢ € L, then Go € Ly,
o if 1,0 € Ly, then —p1,01 Ay € L.

The usual abbreviations for the propositional operators V, —, and < are
used. We write true as an abbreviation for B(p V —p) for some p and false for
—true.

A third basic concept in GOAL is that of an agent capability. The capabilities
of an agent consist of a set of so called basic actions. The effects of executing
such a basic action are reflected in the beliefs of the agent and therefore a basic
action is taken to be a belief update on the agent’s beliefs. A basic action
thus is a mental state transformer. Two examples of agent capabilities are the
actions ins(¢) for inserting ¢ in the belief base and del(¢) for removing ¢ from
the belief base. Agent capabilities are not supposed to change the goals of an
agent, but because of the constraints on mental states they may as a side effect
modify the current goals. For the purpose of modifying the goals of the agent,
two special actions adopt(¢) and drop(¢) are introduced to respectively adopt
a new goal or drop some old goals. We write Bcap and use it to denote the
set of all belief update capabilities of an agent. Becap thus does not include
the two special actions for goal updating adopt(¢) and drop(¢). The set of
all capabilities is then defined as Cap = Bcap U {adopt(¢),drop(¢) | ¢ € L}.
Individual capabilities are denoted by a.

The set of basic actions or capabilities associated with an agent determines
what an agent is able to do. It does not specify when such a capability should

198 CHAPTER 11. THE AGENT LANGUAGE GOAL

be exercised and when performing a basic action is to the agent’s advantage. To
specify such conditions, the notion of a conditional action is introduced. A con-
ditional action consists of a mental state condition expressed by a mental state
formula and a basic action. The mental state condition of a conditional action
states the conditions that must hold for the action to be selected. Conditional
actions are denoted by the symbol b.

Definition 11.1.3 (conditional action)
A conditional action is a pair ¢ — do(a) such that ¢ € L3y and a € Cap.

Informally, a conditional action ¢ — do(a) means that if the mental condi-
tion ¢ holds, then the agent may consider doing basic action a. Of course, if
the mental state condition holds in the current state, the action a can only be
successfully executed if the action is enabled, that is, only if its preconditions
hold.

A GOAL agent consists of a specification of an initial mental state and a set
of conditional actions.

Definition 11.1.4 (GOAL agent)
A GOAL agent is a triple (II, 0,v) where II is a non-empty set of conditional
actions, and (o,) is a mental state.

11.1.1 The Operational Semantics of GOAL

One of the key ideas in the semantics of GOAL is to incorporate into the se-
mantics a particular commitment strategy (cf. Rao & Georgeff (1990) and Co-
hen & Levesque (1990a)). The semantics is based on a particularly simple and
transparent commitment strategy, called blind commitment. An agent that acts
according to a blind commitment strategy drops a goal if and only if it believes
that that goal has been achieved. By incorporating this commitment strategy
into the semantics of GOAL, a default commitment strategy is built into agents.
It is, however, only a default strategy and a programmer can overwrite this de-
fault strategy by means of the drop action. It is not possible, however, to adopt
a goal ¢ in case the agent believes that ¢ is already achieved.

The semantics of action execution should now be defined in conformance with
this basic commitment principle. Recall that the basic capabilities of an agent
were interpreted as belief updates. Because of the default commitment strategy,
there is a relation between beliefs and goals, however, and we should extend the
belief update associated with a capability to a mental state transformer that
updates beliefs as well as goals according to the blind commitment strategy.
To get started, we thus assume that some specification of the belief update
semantics of all capabilities - except for the two special actions adopt and drop
which only update goals - is given. Our task is, then, to construct a mental
state transformer semantics from this specification for each action. That is, we
must specify how a basic action updates the complete current mental state of
an agent starting with a specification of the belief update associated with the
capability only.

11.1. THE PROGRAMMING LANGUAGE GOAL 199

From the default blind commitment strategy, we conclude that if a basic
action a - different from an adopt or drop action - is executed, then a goal is
dropped only if the agent believes that the goal has been accomplished after
doing a. The revision of goals thus is based on the beliefs of the agent. The
beliefs of an agent represent all the information that is available to an agent to
decide whether or not to drop or adopt a goal. So, in case the agent believes
that a goal has been achieved by performing some action, then this goal must be
removed from the current goals of the agent. Besides the default commitment
strategy, only the two special actions adopt and drop can result in a change to
the goal base.

The initial specification of the belief updates associated with the capabilities
Beap is formally represented by a partial function 7 of type : Beap X p(L) —
p(L). T(a,o) returns the result of updating belief base o by performing action
a. The fact that 7 is a partial function represents the fact that an action may
not be enabled or executable in some belief states. The mental state transformer
function M is derived from the semantic function 7 and also is a partial func-
tion. As explained, M(a, (o,~)) removes any goals from the goal base v that
have been achieved by doing a. The function M also defines the semantics of
the two special actions adopt and drop. An adopt(¢) action adds ¢ to the goal
base if ¢ is consistent and ¢ is not believed to be the case. A drop(¢) action
removes every goal that entails ¢ from the goal base. As an example, consider
the two extreme cases: drop(false) removes no goals, whereas drop(true) removes
all current goals.

Definition 11.1.5 (mental state transformer M)
Let {o,7) be a mental state, and T be a partial function that associates belief
updates with agent capabilities. Then the partial function M is defined by:

M(a,{0,7) =(T(a,0),y\{$ €7 | T(a,0) =4}
for a € Beap if T(a, o) is defined,

(0,7)) is undefined for a € Beap if ’T(a o) is undefined,

M(a,

(drop(), (a,M) = (o7 \{Y €7 | ¥ }),
M(adopt(¢), {0,7)) = (0,7 U{¢}) if o £ ¢ and = -,
M(adopt(¢), {(o,7)) is undefined if o = ¢ or = —¢.

The semantic function M maps an agent capability and a mental state to a
new mental state. The capabilities of an agent are thus interpreted as mental
state transformers by M. Although it is not allowed to adopt a goal ¢ that is
inconsistent - an adopt(false) is never enabled - there is no check on the global
consistency of the goal base of an agent built into the semantics. This means
that it is allowed to adopt a new goal which is inconsistent with another goal
present in the goal base. For example, if the current goal base v = {p} contains
D, it is legal to execute the action adopt(—p) resulting in a new goal base {p, ~p}.
Although inconsistent goals cannot be achieved at the same time, they may be
achieved in some temporal order. Individual goals in the goal base, however,
are required to be consistent. Thus, whereas local consistency is required (i.e.

200 CHAPTER 11. THE AGENT LANGUAGE GOAL

individual goals must be consistent), global consistency of the goal base is not
required (i.e. v = {p,—p} is a legal goal base).

The second idea incorporated into the semantics concerns the selection of
conditional actions. A conditional action ¢ — do(a) may specify conditions on
the beliefs as well as conditions on the goals of an agent. As is usual, conditions
on the beliefs are taken as a precondition for action execution: only if the agent’s
current beliefs entail the belief conditions associated with ¢ the agent will select
a for execution. The goal condition, however, is used in a different way. It is
used as a means for the agent to determine whether or not the action will help
bring about a particular goal of the agent. In short, the goal condition specifies
where the action is good for. This does not mean that the action necessarily
establishes the goal immediately, but rather may be taken as an indication that
the action is helpful in bringing about a particular state of affairs. To make this
discussion more precise, we introduce a formal definition of a formula ¢ that
partially fulfils a goal in a mental state (o,).

Definition 11.1.6 (¢ partially fulfils a goal in a mental state)
Let {o,~) be a mental state, and ¢ € £. Then:

¢~ v iff for some ¢ € v: 9 = ¢ and o £ ¢

Informally, the definition of ¢ ~~, v can be paraphrased as follows: the agent
needs to establish ¢ to realise one of its goals in v, but does not believe that
¢ is the case. The formal definition of ¢ ~», 7 entails that the realisation of
¢ would bring about at least part of one of the goals in the goal base « of the
agent. The condition that ¢ is not entailed by the beliefs of the agent ensures
that a goal is not a tautology. Of course, variations on this definition of the
semantics of goals are conceivable. For example, one could propose a stronger
definition of ~» such that ¢ brings about the complete realisation of a goal in the
current goal base «y instead of just part of such a goal. However, our definition
of ~» provides for a simple and clear principle for action selection: the action in
a conditional action is only executed in case the goal condition associated with
that action partially fulfils some goal in the current goal base of the agent.

The semantics of belief conditions B¢, goal conditions G¢ and mental state
formulas is defined in terms of the consequence relation |= and the ‘partially
fulfils relation’ ~.

Definition 11.1.7 (semantics of mental state formulas)
Let {o,~v) be a mental state.

EBgiff o ¢,
|:G¢iff¢”‘>a%
E v iff (0,7) ¥ ¢,

e (0,7) E o1 A2 iff (0,7) = @1 and (0,7) F 2.

® (O,

(0,7)
(0,7)
* (0,7)
(0,7)

11.1. THE PROGRAMMING LANGUAGE GOAL 201

A number of properties of the belief and goal modalities and the relation
between these operators are listed in the following lemma. By the necessitation
rule, an agent believes all tautologies (Btrue). The first validity below states
that the beliefs of an agent are consistent. The belief modality distributes over
implication, which is expressed by the second validity. This implies that the
beliefs of an agent are closed under logical consequence. The third validity
is a consequence of the constraint on mental states and expresses that if an
agent believes ¢ it does not have a goal to achieve ¢. As a consequence, an
agent cannot have a goal to achieve a tautology. An agent also does not have
inconsistent goals, that is, —G(false) is valid.

The goal modality is a very weak logical operator. For example, the goal
modality does not distribute over implication. A counter example is provided
by the goal base v = {p,p = ¢}. Even G(¢ A (¢ = 1)) — Gt does not hold,
because the agent may believe that ¢ is the case even if it has a goal to achieve
¢ A (¢ —). Because of the axiom By — =Gy, we must have =Gy in that case
and we cannot conclude that Gi¢. From the fact that G¢ and Gt hold, it is also
not possible to conclude that G(#Aw)). This reflects the fact that individual goals
cannot be added to a single bigger goal; recall that two individual goals may
be inconsistent (G A G—¢ is satisfiable) in which case taking the conjunction
would lead to an inconsistent goal. In sum, most of the usual problems that
many logical operators for motivational attitudes suffer from do not apply to
our G operator (cf. also Meyer et al. (1999)). Finally, the conditions that allow
to conclude that the agent has a (sub)goal 1) are that the agent has a goal ¢
that logically entails ¢ and that the agent does not believe that ¢ is the case.
The proof rule below then allows to conclude that G holds.

Lemma 11.1.8

e Ep=>EBgp, forpeL,
= -B(false),
F B(¢ = ¢) — (B¢ — By),
F Bo — —G9,
= —G(true),
= G(false),
= G(¢ = ¢) = (Gop — Gy),
¥ G(@A (0 —y)) = Gy,
= (Go A GY) = G(o AY),

G¢a _‘Blb, |: ¢ - ¢;
Gy

202 CHAPTER 11. THE AGENT LANGUAGE GOAL

Now we have defined the formal semantics of mental state formulas, we are
able to formally define the selection and execution of a conditional action. The
selection of an action by an agent depends on the satisfaction conditions of the
mental state condition associated with the action in a conditional action. The
conditions for action selection thus may express conditions on both the belief
and goal base of the agent. The belief conditions associated with the action
formulate preconditions on the current belief base of the agent. Only if the
current beliefs of the agent satisfy these conditions, an action may be selected.
A condition G¢ on the goal base is satisfied if ¢ is entailed by one of the current
goals of the agent (and thus, assuming the programmer did a good job, helps
in bringing about one of these goals). The intuition here is that an agent is
satisfied with anything bringing about at least (part of) one of its current goals.
Note that a condition G¢ can only be satisfied if the agent does not already
believe that ¢ is the case (o £ ¢) which prevents an agent from performing an
action without any need to do so.

In the definition below, we assume that the action component II of an agent
(IT, o, v) is fixed. The execution of an action gives rise to a computation step

formally denoted by the transition relation %, where b is the conditional action
executed in the computation step. More than one computation step may be
possible in a current state and the step relation — thus denotes a possible
computation step in a state. A computation step updates the current state and
yields the next state of the computation. Note that because M is a partial
function, a conditional action can only be successfully executed if both the
condition is satisfied and the basic action is enabled.

Definition 11.1.9 (action selection)
Let {(o,v) be a mental state and b = ¢ — do(a) € II. Then, as a rule, we have:
If

e the mental condition ¢ holds in (o, 7), i.e. {0,7) = ¢, and

e ais enabled in {0,7v), i.e. M(a,(0,7)) is defined,

then (o,) LN M(a, {o,7)) is a possible computation step. The relation — is
the smallest relation closed under this rule.

We say that a capability a € Cap is enabled in a mental state (o,v) in case
M(a, (0,7)) is defined. This definition implies that a belief update capability
a € Beap is enabled if T (a, o) is defined. A conditional action b is enabled in a

mental state (o,) if there are o',+' such that {(o,~) LN (¢',4"). Note that if a
capability a is not enabled, a conditional action ¢ — do(a) is also not enabled.
The special predicate enabled is introduced to denote that a capability a or
conditional action b is enabled (denoted by enabled(a) respectively enabled(b)).

Definition 11.1.10 (semantics of enabled)
e (0,7) |E enabled(a) iff M(a,{o,7)) is defined for a € Cap,

11.2. A PERSONAL ASSISTANT EXAMPLE 203

e (0,7) |E enabled(b) iff there are o',v' such that (o,~) LN (¢',%") for
conditional actions where b = ¢ — do(a).

The relation between the enabledness of capabilities and conditional actions
is stated in the next lemma together with the fact that drop(¢) is always enabled
and a proof rule for deriving enabled(adopt(¢)).

Lemma 11.1.11
o = enabled(¢ — do(a)) ¢ (¢ A enabled(a)),
o | enabled(drop(s),
e = enabled(adopt(¢)) — —Bg,

7 ¢
e B¢ — enabled(adopt(¢))

11.2 A Personal Assistant Example

In this section, we give an example to show how the programming language
GOAL can be used to program agents. The example concerns a shopping agent
that is able to buy books on the Internet on behalf of the user. The example
provides for a simple illustration of how the programming language works. The
agent in our example uses a standard procedure for buying a book. It first goes
to a bookstore, in our case Amazon.com. At the web site of Amazon.com it
searches for a particular book, and if the relevant page with the book details
shows up, the agent puts the book in its shopping cart. In case the shopping
cart of the agent contains some items, it is allowed to buy the items on behalf
of the user. The idea is that the agent adopts a goal to buy a book if the user
instructs it to do so.
The set of capabilities Beap of the agent is defined by

{goto_website(site), search(book), put_in_shopping_cart(book), pay_cart}

The capability goto_website(site) goes to the selected web page site. In our
example, relevant web pages are the home page of the user, the main page
of Amazon.com, web pages with information about books to buy, and a web
page that shows the current items in the shopping cart of the agent. The
capability search(book) is an action that can be selected at the main page of
Amazon.com and selects the web page with information about book. The action
put_in_shopping_cart(book) can be selected on the page concerning book and
puts book in the cart; a new web page called ContentCart shows up showing the
content of the cart. Finally, in case the cart is not empty the action pay_cart
can be selected to pay for the books in the cart.

In the program text below, we assume that book is a variable referring to the
specifics of the book the user wants to buy (in the example, we use variables as

204 CHAPTER 11. THE AGENT LANGUAGE GOAL

a means for abbreviation; variables should be thought of as being instantiated
with the relevant arguments in such a way that predicates with variables reduce
to propositions). The initial beliefs of the agent are that the current web page is
the home page of the user, and that it is not possible to be on two different web
pages at the same time. We also assume that the user has provided the agent
with the goals to buy The Intentional Stance by Daniel Dennett and Intentions,
Plans, and Practical Reason by Michael Bratman.

=1
B(current_website(homepage(user)) V current_website(ContentCart))
AG(bought(book)) — do(goto_website(Amazon.com)),
B(current_website(Amazon.com)) A —=B(in_cart(book))A
G(bought(book)) — do(search(book)),
B(current_website(book)) A G(bought(book)) —
do(put_in_shopping_cart(book)),
B(in_cart(book)) A G(bought(book)) — do(pay_cart)},
oo = {current_webpage(homepage(user)),
Vs,s'((s # 8" A current_webpage(s)) — —current_webpage(s'))
}

Yo = {bought(The Intentional Stance)A
bought(Intentions, Plans and Practical Reason)}

GOAL Shopping Agent

Some of the details of this program will be discussed in the next chapter,
when we prove some properties of the program. The agent basically follows the
recipe for buying a book outlined above. For now, however, just note that the
program is quite flexible, even though the agent more or less executes a fixed
recipe for buying a book. The flexibility results from the agent’s knowledge
state and the non-determinism of the program. In particular, the ordering in
which the actions are performed by the agent - which book to find first, buy a
book one at a time or both in the same shopping cart, etc. is not determined by
the program. The scheduling of these actions thus is not fixed by the program,
and might be fixed arbitrarily on a particular agent architecture used to run the
program.

11.3 Possible Extensions of GOAL

Although the basic features of the language GOAL are quite simple, the pro-
gramming language GOAL is already quite powerful and can be used to program
real agents. One of the restrictions of GOAL is that it only allows the use of
basic actions. There are, however, several strategies to deal with this restric-
tion. First of all, if a GOAL agent is proven correct, any scheduling of the basic
actions that is weakly fair can be used to execute the agent.! More specifically,

IThe notion of weak fairness has been defined in chapter 4 and in the next chapter a more
extensive discussion and another definition of this notion can be found.

11.4. CONCLUSION 205

an interesting possibility is to define a mapping from GOAL agents to a par-
ticular agent architecture (cf. also Chandy & Misra (1988)). Such a mapping
then may focus more on concerns like the efficiency or flexibility to determine
the specific mapping that is most useful with respect to available architectures.
There is only one condition that an agent architecture onto which a GOAL agent
is mapped should obey, namely, it should implement a weakly fair scheduling
policy. The concept of fair scheduling was defined in chapter 4 and is explained
again in the next chapter.

A second strategy to circumvent to some extent the restriction that only ba-
sic actions are to be used is to use different grains of atomicity of basic actions.
If a coarse-grained atomicity of basic actions is feasible for an application, one
might consider taking complex plans as atomic actions and instantiate the basic
actions in GOAL with these plans (however, termination of these complex plans
should be guaranteed). Finally, in future research the extension of GOAL with a
richer notion of action structure like for example plans could be explored. This
would make the programming language more practical. The addition of such
a richer notion, however, is not straightforward. At a minimum, more book-
keeping seems to be required to keep track of the goals that an agent already
has chosen a plan for and which it is currently executing. This bookkeeping is
needed, for example, to prevent the selection of more than one plan to achieve
the same goal. Note that this problem was dealt with in GOAL by the imme-
diate and complete execution of a selected action. It is therefore not yet clear
how to give a semantics to a variant of GOAL extended with complex plans.
The ideal, however, would be to combine the language GOAL which includes
declarative goals with the agent programming language 3APL which includes
planning features into a single new programming framework.

Apart from introducing more complex action structures, it would also be par-
ticularly interesting to extend GOAL with high-level communication primitives.
Because both declarative knowledge as well as declarative goals are present in
GOAL, communication primitives could be defined in the spirit of speech act
theory (Searle 1969). The semantics of, for example, a request primitive could
then be formally defined in terms of the knowledge and goals of an agent. More-
over, such a semantics would have a computational interpretation because both
beliefs and goals have a computational interpretation in our framework.

11.4 Conclusion

Although a programming language dedicated to agent programming is not the
only viable approach to building agents, we believe it is one of the more practical
approaches for developing agents. Several other approaches to the design and
implementation of agents have been proposed. One such approach promotes the
use of agent logics for the specification of agent systems and aims at a further
refinement of such specifications by means of an associated design methodology
for the particular logic in use to implementations which meet this specification
in, for example, an object-oriented programming language like Java. In this ap-

206 CHAPTER 11. THE AGENT LANGUAGE GOAL

proach, there is no requirement on the existence of a natural mapping relating
the end result of this development process - a Java implementation - and the
formal specification in the logic. It is, however, not very clear how to implement
these ideas for agent logics incorporating both informational and motivational
attitudes and some researchers seem to have concluded from this that the notion
of a motivational attitude (like a goal) is less useful than hoped for. Still another
approach consists in the construction of agent architectures which ‘implement’
the different mental concepts. Such an architecture provides a template which
can be instantiated with the relevant beliefs, goals, etc. Although this second
approach is more practical than the first one, our main problem with this ap-
proach is that the architectures proposed so far tend to be quite complex. As a
consequence, it is quite difficult to understand what behaviour an architecture
that is instantiated will generate.

The design of a programming framework for intelligent agents resulted in the
first part of this thesis in the programming language 3APL. 3APL supports the
construction of intelligent agents, and reflects in a natural way the intentional
concepts used to design agents. 3APL is a very powerful language, as was also
shown in part II. It allows the construction of a multi-agent system of agents
that communicate their beliefs, requests, perform actions, and construct plans
to achieve their goals. A feature that distinguishes 3APL from most other
agent frameworks is the reflective capabilities of 3APL agents due to practical
reasoning rules.

However, 3APL includes a procedural instead of a declarative notion of goal.
In this respect, it is similar to most other agent programming frameworks. It has
been our aim in this chapter to show that it is feasible to incorporate declarative
goals into a programming framework. The language GOAL was defined with
a semantics that is computational and rather straightforward to implement,
although this may require some restrictions on the logical reasoning involved
on the part of GOAL agents. Because of the lack of a declarative concept of
goal in languages like 3APL, it is hard to link these programming frameworks
to agent logics. The use of such a link is obvious. It allows agent logics to be
used to specify and verify the agents programmed in an agent language. In the
next chapter, we show that such a link can be established for GOAL.

CHAPTER 12

Temporal Logic for GOAL

On top of the language GOAL and its semantics, we introduce a temporal
logic to prove properties of GOAL agents. The logic extends the mental state
language £y of the previous chapter with features to reason about (conditional)
actions and temporal properties of an agent. Hoare triples and associated proof
rules are used to prove properties of actions. A temporal logic is introduced to
reason about temporal aspects of GOAL agents. The logic is similar to other
temporal logics but its semantics is derived from the operational semantics for
GOAL.

First, we introduce the semantics for GOAL agents. Then we discuss basic
action theories and in particular the use of Hoare triples for the specification
of actions performed by GOAL agents. These Hoare triples play an important
role in the programming logic since it can be shown that temporal properties of
agents can be proven by means of proving Hoare triples for actions only. Then
the language for expressing temporal properties and its semantics is defined and
the fact that certain classes of interesting temporal properties can be reduced
to properties of actions, expressed by Hoare triples, is proven. Finally, the
example shopping agent of the previous chapter is proven correct by using the
programming logic.

12.1 Semantics of GOAL Agents

The semantics of GOAL agents is derived directly from the operational seman-
tics and the computation step relation — as defined in the previous chapter.
The meaning of a GOAL agent consists of a set of so called traces. A trace is an
infinite computation sequence of consecutive mental states interleaved with the
actions that are scheduled for execution in each of those mental states. The fact
that a conditional action is scheduled for execution in a trace does not mean
that it is also enabled in the particular state for which it has been scheduled.
In case an action is scheduled but not enabled, the action is simply skipped and

207

208 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

the resulting state is the same as the state before.

Definition 12.1.1 (trace)

A trace s is an infinite sequence sg, bg, 81, b1, $2,... such that s; is a mental
. . .) bi .

state, b; is a conditional action, and for every i we have: s; — s;41, or b; is

not enabled in s; and s; = s;j41.

An important assumption in the semantics for GOAL is a fairness assump-
tion. Fairness assumptions concern the fair selection of actions during the exe-
cution of a program. In our case, we make a weak fairness assumption (Manna
& Pnueli 1992).

A trace is weakly fair if it is not the case that an action is always enabled
from some point in time on but is never selected for execution.

Weak Fairness

This weak fairness assumption is built into the semantics by imposing a
constraint on traces. By definition, a fair trace is a trace in which each of the
actions is scheduled infinitely often. In a fair trace, there always will be a future
time point at which an action is scheduled (considered for execution) and by
this scheduling policy a fair trace implements the weak fairness assumption.
However, note that the fact that an action is scheduled does not mean that the
action also is enabled (and therefore, the selection of the action may result in
an idle step which does not change the state).

The meaning of a GOAL agent now is defined as the set of fair traces in
which the initial state is the initial mental state of the agent and each of the
steps in the trace corresponds to the execution of a conditional action or an idle
transition.

Definition 12.1.2 (meaning of a GOAL agent)
The meaning of a GOAL agent (II, gg, o) is the set of fair traces S such that
for s € S we have so = {(00,70)-

12.2 Hoare Triples

The specification of basic actions provides the basis for the programming logic,
and, as we will show below, is all we need to prove properties of agents. Because
they play such an important role in the proof theory of GOAL, the specifica-
tion of the basic agent capabilities requires special care. In the proof theory
of GOAL, Hoare triples of the form {¢} b {¢}, where ¢ and 1) are mental
state formulas, are used to specify actions. The use of Hoare triples in a formal
treatment of traditional assignments is well-understood (Andrews 1991). Be-
cause the agent capabilities of GOAL agents are quite different from assignment
actions, however, the traditional predicate transformer semantics is not applica-
ble. GOAL agent capabilities are mental state transformers and, therefore, we
require more extensive basic action theories to formally capture the effects of

12.2. HOARE TRIPLES 209

such actions. Hoare triples are used to specify the postconditions and the frame
conditions of actions. The postconditions of an action specify the effects of an
action whereas the frame conditions specify what is not changed by the action.
Axioms for the predicate enabled specify the preconditions of actions.

The formal semantics of a Hoare triple for conditional actions is derived from
the semantics of a GOAL agent and is defined relative to the set of traces Sa
associated with the GOAL agent A. A Hoare triple for conditional actions thus
expresses a property of an agent and not just a property of an action. The
semantics of the basic capabilities are assumed to be fixed, however, and are
not defined relative to an agent.

Definition 12.2.1 (semantics of Hoare triples for basic actions)
A Hoare triple for basic capabilities {©} a {1} means that for all o,

o (0,7) ¢ A enabled(a) = M(a, (0,7)) k= ¥, and

¢ (0,7) |= ¢ A enabled(a) = (0,7) = ¢

To explain this definition, note that we made a case distinction between
states in which the basic action is enabled and in which it is not enabled. In
case the action is enabled, the postcondition ¢ of the Hoare triple {¢} a {1}
should be evaluated in the next state resulting from executing action a. In case
the action is not enabled, however, the postcondition should be evaluated in the
same state because a failed attempt to execute action a is interpreted as an idle
step in which nothing changes.

Hoare triples for conditional actions are interpreted relative to the set of
traces associated with the GOAL agent of which the action is a part. Below, we
write ¢[s;] to denote that a mental state formula ¢ holds in state s;.

Definition 12.2.2 (semantics of Hoare triples for conditional actions)
Given an agent A, a Hoare triple for conditional actions {p} b {¢} (for A) means
that for all traces s € S4 and %, we have that

(plsi] Ab=b; € 5) = Y[siy1]

where b; € s means that action b; is taken in state ¢ of trace s.

Of course, there is a relation between the execution of basic actions and that
of conditional actions, and therefore there also is a relation between the two
types of Hoare triples. The following lemma makes this relation precise.

Lemma 12.2.3 Let A be a GOAL agent and S4 be the meaning of A. Suppose
that we have {p A9y} a {¢'} and S4 E (¢ A) = ¢'. Then we also have
{e} v = do(a) {¥'}-

210 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

Proof: We need to prove that (¢[s;] A (¢ = do(a)) = b; € s) = ¢'[sit1].
Therefore, assume @[s;] A (¢ — do(a)) = b; € s. Two cases need to be distin-
guished: The case that the condition ¢ holds in s; and the case that it does
not hold in s;. In the former case, because we have {p A} a {¢'} we then
know that s;+1 = ¢'. In the latter case, the conditional action is not executed
and s;y1 = 5. From ((¢ A =) — ¢')[si], ¢[si] and —)[s;] it then follows that
¢'[si+1] since ¢’ is a state formula. O

The definition of Hoare triples presented here formalises a total correctness
property. A Hoare triple {¢} b {¢} ensures that if initially ¢ holds, then an
attempt to execute b results in a successor state and in that state ¢ holds. This
is different from partial correctness where no claims about the termination of
actions and the existence of successor states are made.

12.3 Basic Action Theories

A basic action theory specifies the effects of the basic capabilities of an agent. It
specifies when an action is enabled, it specifies the effects of an action and what
does not change when an action is executed. In this respect, a GOAL basic
action theory is similar to basic action theories defined in chapter 10 that are
specified in the situation calculus. The structure of GOAL basic action theories,
however, is quite different from basic action theories used by ConGolog.

A basic action theory consists of axioms for the predicate enabled for each
basic capability, Hoare triples that specify the effects of basic capabilities and
Hoare triples that specify frame axioms associated with these capabilities. Since
the belief update capabilities of an agent are not fixed by the language GOAL
but are user-defined, the user should specify the axioms and Hoare triples for
belief update capabilities. The special actions for goal updating adopt and drop
are part of GOAL and a set of axioms and Hoare triples for these actions is
specified below.

Because in this chapter, our concern is not with the specification of basic
action theories in particular, but with providing a programming logic for agents
in which such specifications can be plugged in, we only provide some example
specifications of the capabilities defined in the personal assistant example that
we need in the proof of correctness below.

First, we specify a set of axioms for each of our basic actions that state when
that action is enabled. Below, we abbreviate the book titles of the example, and
write T for The Intentional Stance and I for Intentions, Plans, and Practical
Reason. Moreover, recall that variables are used to abbreviate and should in
fact be instantiated with the appropriate parameters. In the shopping agent

12.3. BASIC ACTION THEORIES 211

example, we then have:

enabled(goto_website(site)) <> true,

enabled(search(book)) <> B(current_website(Amazon.com)),

enabled (put_in_shopping_cart(book)) <> B(current_website(book)),

enabled(pay_cart) < ((Bin_cart(T) V Bin_cart(I))
ABcurrent_website(ContentCart)).

Second, we list a number of effect axioms that specify the effects of a capa-
bility in particular situations defined by the preconditions of the Hoare triple.

e The action goto_website(site) results in moving to the relevant web page:
{true} goto_website(site) {Bcurrent_website(site)},

e At Amazon.com, searching for a book results in finding a page with rele-
vant information about the book:

{Bcurrent_website(Amazon.com)}
search(book)
{Bcurrent_website(book)}

e On the page with information about a particular book, selecting the action
put_in_shopping_cart(book) results in the book being put in the cart; also,
a new web page appears on which the contents of the cart are listed:

{Bcurrent_website(book)}
put_in_shopping_cart(book)
{B(in_cart(book) A current_website(ContentCart))}

e In case book is in the cart, and the current web page presents a list of all
the books in the cart, the action pay_cart may be selected resulting in the
buying of all listed books:

{B(in_cart(book) A current_website(ContentCart))}
pay_cart
{—-Bin_cart(book) A B(bought(book) A current_website(Amazon.com))}

Finally, we need a number of frame axioms that specify which properties
are not changed by each of the capabilities of the agent. For example, both the
capabilities goto_website(site) and search(book) do not change any beliefs about
in_cart. Thus we have, e.g.:

{Bin_cart(book)} goto_website(site) {Bin_cart(book)}
{Bin_cart(book)} search(book) {Bin_cart(book)}

It will be clear that we need more frame axioms than these two, and some of
these will be specified below in the proof of the correctness of the shopping
agent.

212 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

It is important to realise that the only Hoare triples that need to be specified
for agent capabilities are Hoare triples that concern the effects upon the beliefs of
the agent. Changes and persistence of (some) goals due to executing actions can
be derived with the proof rules and axioms below that are specifically designed
to reason about the effects of actions on goals.

A theory of the belief update capabilities and their effects on the beliefs of an
agent must be complemented with a theory about the effects of actions upon the
goals of an agent. Such a theory should capture both the effects of the default
commitment strategy as well as give a formal specification of the the drop and
adopt actions.

The default commitment strategy imposes a constraint on the persistence
of goals. A goal persists if it is not the case that after doing a the goal is be-
lieved to be achieved. Only action drop(¢) is allowed to overrule this constraint.
Therefore, in case a # drop(¢), we have that {G¢} a {Bp VvV Gé}. This Hoare
triple precisely captures the default commitment strategy and states that after
executing an action the agent either believes it has achieved ¢ or it still has
the goal ¢ if ¢ was a goal initially. A similar Hoare triple can be given for the
persistence of the absence of a goal. Formally, we have {-~G¢} b {-B¢ vV =Gg}.
This Hoare triple states that the absence of a goal ¢ persists, and in case it
does not persist the agent does not believe ¢ (anymore). We do not need this
Hoare triple as an axiom, however, since it is a direct consequence of the fact
that B¢ — —G¢. Note that the stronger {—G¢} b {-G¢} does not hold, even if
b # ¢ — do(adopt(¢)).

It thus may also be the case that an agent believed it achieved ¢ but after
doing an action b it no longer believes this to be the case and adopts ¢ as a goal
again. For example, if the goal base v = {p A ¢} and the belief base o = {p},
then the agent does not have a goal to achieve p because it already believes p
to be the case; however, in case an action changes the belief base such that p
no longer is believed, the agent has a goal to achieve p (again). This provides
for a mechanism similar to that of maintenance goals.

The specification of the special actions drop and adopt involves a number of
frame axioms and a number of proof rules. The frame axioms capture the fact
that neither of these actions has any effect on the beliefs of an agent:

o {B¢} adopt(y) {Bo}, {~Bg} adopt(¢) {-Bg},
¢ {B¢} drop(¢) {B¢}, {-B¢} drop(y) {-Bo}.

The proof rules for the actions adopt and drop capture the effects on the goals
of an agent. For each action, we list proof rules for the adoption respectively
the dropping of goals, and for the persistence of goals. An agent adopts a new
goal ¢ in case the agent does not believe ¢ and ¢ is not a contradiction.

¢
{=B¢} adopt(¢) {Go}

12.3. BASIC ACTION THEORIES 213

An adopt action does not remove any current goals of the agent. Any existing
goals thus persist when adopt is executed. The persistence of the absence of goals
is somewhat more complicated in the case of an adopt action. An adopt(¢) action
does not add a new goal v in case 9 is not entailed by ¢ or v is believed to be
the case:

Eo—=9

{Gy} adopt(¢) {Gy} {~Go} adopt(y) {=Gp} {Be} adopt(¢) {~Ge}

A drop action drop(¢) results in the removal of all goals that entail ¢. This
is captured by the proof rule:

Ei—¢
{Gy} drop(¢) {-Ge}

A drop action drop(¢) never results in the adoption of new goals. The absence
of a goal 9 thus persists when a drop action is executed. It is more difficult to
formalise the persistence of a goal with respect to a drop action. Since a drop
action drop(¢) removes goals which entail ¢, to conclude that a goal ¢ persists
after executing the action, we must make sure that the goal does not depend on
a goal (is a subgoal) that is removed by the drop action. In case the conjunction
¢ A1 is not a goal, we know this for certain.

{=Go} drop() {=Go} {=G(d A4) A Go} drop(¢) {Go}

The basic action theories for GOAL include a number of proof rules to derive
Hoare triples. The Rule for Infeasible Capabilities allows to derive frame axioms
for a capability in case it is not enabled in a particular situation. The Rule
for Conditional Actions allows the derivation of Hoare triples for conditional
actions from Hoare triples for capabilities. This rule is justified by lemma 12.2.3.
Finally, there are three rules for combining Hoare triples and for strengthening
the precondition and weakening the postcondition.

Rule for Infeasible Capabilities: Rule for Conditional Actions:

¢ — —enabled(a) {enyia{e'} (pA—9) = ¢
{o}a{e} {9} ¢ — do(a) {¢'}
Consequence Rule: Conjunction Rule:
¢ = e {ota{vhp = {@1} b {41}, {wa} b {2}
{¢'ta{y'} {o1 A2} b {1 Ao}

Disjunction Rule:

{e1} b {¢}, {p2} b {¥}
{o1V 2} b {9}

214 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

12.4 Temporal logic

On top of the Hoare triples for specifying actions, a temporal logic is used
to specify and verify properties of GOAL agents. Two new operators are in-
troduced. The proposition init states that the agent is at the beginning of
execution and nothing has happened yet. The second operator wuntil is a
weak until operator. ¢ until ¢ means that ¢ eventually becomes true and ¢ is
true until 1) becomes true, or 1 never becomes true and ¢ remains true forever.
Recall that £ is a propositional language.

Definition 12.4.1 (language of temporal logic L1 based on L)
The temporal logic language L7 is inductively defined by:

e init € L,

enabled(a), enabled(p — do(a)) € L for a € Cap,

if ¢ € L, then Bp,Go € L,
o if p,9) € L, then —p,p Ap € L,
o if p,¢p € Lo, then p untily € L.

A number of other well known temporal operators can be defined in terms of
the operator until . The always operator Oy is an abbreviation for ¢ until false,
and the eventuality operator op is defined as -O—¢ as usual.

Temporal formulas are evaluated with respect to a trace s and a time point
i. State formulas like Bp, Gip, enabled(a) etc. are evaluated with respect to
mental states.

Definition 12.4.2 (semantics of temporal formulas)
Let s be a trace and 7 be a natural number.

e 5,4 =initiff i =0,

e 5,1 |= enabled(a) iff enabled(a)[s;],

e s,i = enabled(p — do(a)) iff enabled(y — do(a))[s:],
o 5,i | Bg iff Belsi]

o 5,1 = Go iff Go[s;],

e s,i | piff s,i o,

e s;iEeAYiff s;il=pand s, i E 1,

e 5,i = ¢ until ¢ iff
35 2 i(5,d = AVAG < k <5,k = 9))) or VE > i(s, k =)

12.4. TEMPORAL LOGIC 215

We are particularly interested in temporal formulas that are valid with re-
spect to the set of traces Sa associated with a GOAL agent A. Temporal
formulas valid with respect to S4 express properties of the agent A.

Definition 12.4.3 Let S be a set of traces.
e SEpiff Vs e S i(s,i E v),
o = iff S = ¢ where S is the set of all traces.

In general, two important types of temporal properties can be distinguished.
Temporal properties are divided into liveness and safety properties. Liveness
properties concern the progress that a program makes and express that a (good)
state eventually will be reached. Safety properties, on the other hand, express
that some (bad) state will never be entered. In the rest of this section, we discuss
a number of specific liveness and safety properties of an agent 4 = (Il 4, o, 7).

We show that each of the properties that we discuss are equivalent to a set
of Hoare triples. The importance of this result is that it shows that temporal
properties of agents can be proven by inspection of the program text only. The
fact that proofs of agent properties can be constructed by inspection of the
program text means that there is no need to reason about individual traces of
an agent or its operational behaviour. In general, reasoning about the program
text is more economical since the number of traces associated with a program
is exponential in the size of the program.

The first property we discuss concerns a safety property, and is expressed
by the temporal formula ¢ — (¢ until). Properties in this context always
refer to agent properties and are evaluated with respect to the set of traces
associated with that agent. Therefore, we can explain the informal meaning of
the property as stating that if ¢ ever becomes true, then it remains true until
1) becomes true. By definition, we write this property as ¢ unless):

@ unless) 4 » — (¢ until ¢)

An important special case of an unless property is ¢ unless false, which
expresses that if ¢ ever becomes true, it will remain true. ¢ unless false means
that ¢ is a stable property of the agent. In case we also have init — ¢, where
init denotes the initial starting point of execution, ¢ is always true and is an
invariant of the program.

Now we show that unless properties of an agent A = (II, o,v) are equiv-
alent to a set of Hoare triples for basic actions in II. This shows that we can
prove unless properties by proving a set of Hoare triples. The proof relies on
the fact that if we can prove that after executing any action from II either ¢
persists or 1) becomes true, we can conclude that ¢ unless).

Theorem 12.4.4 Let A = (Il4,0,v). Then:

Vbella({p A=} b {pVy}) iff S4 E ¢ unless ¢

216 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

Proof: The proof from right to left is the easiest direction in the proof. Sup-
pose that S4 = ¢ unless ¢ and s,i |= . This implies that s, = ¢ until 1.
In case we also have s, 4 |= 1), we are done. So, assume s, = —) and action b
is selected in the trace at state s;. From the semantics of until we then know
that ¢ V 1 holds at state s;+1, and we immediately obtain {¢ A =)} b {¢ V ¢}
since trace s and time point ¢ were arbitrarily chosen.

We prove the left to right case by contraposition. Suppose that

(x) Vb e Ma({p A=} b {o V1))

and for some s € S4 we have s, i [~ ¢ unless ¢). The latter fact means that we
have s,i |= ¢ and s, i [£ ¢ until ¢. s,i [~ ¢ until ¢ implies that either (i) ¢
is never established at some j > i but we do have —¢ at some time point k > ¢
or (ii) v is established at some time j > 4, but in between ¢ and any such j it
is not always the case that ¢ holds.

In the first case (i), let k& > 4 be the smallest k such that s,k & ¢. Then, we
have s,k —1 = ¢ A and s,k = ~p A). In that case, we must have that
in state sy_; a conditional action has been performed since the state has been
changed. From (*) we then derive a contradiction.

In the second case (ii), let k£ > i be the smallest k such that s,k = 1. Then
we know that there is a smallest j such that ¢ < j < k and s,j [~ ¢ (j # i since
8,4 = ¢). This means that we have 5,5 — 1 = ¢ A —b. In that case, we again
must have that in state s;_1 a conditional action has been performed. From (*)
we then derive a contradiction. O

Liveness properties involve eventualities which state that some state will be
reached starting from a particular situation. To express a special class of such
properties, we introduce the operator ¢ ensures 1. ¢ ensures 7 informally
means that ¢ guarantees the realisation of v, and is defined as:

(ensures 1) 3 @ unless) A (p = o))

 ensures 1) thus ensures that 1) is eventually realised starting in a situation
in which ¢ holds, and requires that ¢ holds until % is realised. For the class of
ensures properties, we can again show that these properties can be proven by
proving a set of Hoare triples. The proof of a ensures property thus can be
reduced to the proof of a set of Hoare triples.

Theorem 12.4.5 Let A = (Il4,0,v). Then:

Vobela({p A} b {pVvy}) ATbella({p A9} b {¥})
= S |= ¢ ensures ¢

Proof: In the proof, we need the weak fairness assumption. Since ¢ ensures 1)
is defined as ¢ unless ¥ A (¢ — o)), by theorem 12.4.4 we only need to
prove that S4 = ¢ — o given that Vb € Ta({p A=} b {pV}) ATb €
Ia({e A=} b {¢b}). Now suppose, to arrive at a contradiction, that for some

12.5. PROVING AGENTS CORRECT 217

time point ¢ and trace s € S4 we have: s,7 = ¢ A =1 and assume that for all
later points j > i we have s,j = —1). In that case, we know that for all j > i
we have s,j = ¢ A =9 (because we may assume ¢ unless ¢). However, we
also know that there is an action b that is enabled in a state in which ¢ A =2
holds and transforms this state to a state in which 1 holds. The action b thus is
always enabled, but apparently never taken. This is forbidden by weak fairness,
and we arrive at a contradiction. O

The implication in the other direction in theorem 12.4.5 does not hold. A
counterexample is provided by the program:

I ={
B(-pAq) =
B(-pAr)— do(lns

Bp — do(ins(—p A q)),

Bp — do(ins(—p A 1))},

o ={pr},

vy =a.
where

T(ins(p),{-pAq}) ={p A g}, T(ins(p),{-pAr}) ={pAr}
T (ins(—p A q),{p}) = T (ins(—p A q), {{p A q}) = {-p A ¢},
T(ins(=p A7), {p}) =T(ins(=p Ar),{pAr})={-pAr}

For this program, we have that B-p ensures Bp holds, but we do not have
{B-p A-Bp} b {Bp} for some b € II.

Finally, we introduce a third temporal operator ‘leads to’ . The operator
¢ — 1 differs from ensures in that it does not require ¢ to remain true until
1) is established, and is derived from the ensures operator. — is defined as
the transitive, disjunctive closure of ensures .

Definition 12.4.6 (leads to operator)
The leads to operator — is defined by:

(ensures 1) PP X, XU pr=Y, o0 2 Y
o o (p1V...Vpn) =9

The meaning of the ‘leads to’ operator is captured by the following lemma.
 — 1 means that given ¢ condition ¢ will eventually be realised. The proof
of the lemma is an easy induction on the definition of .

Lemma 12.4.7 ¢ — ¢ E ¢ — o).

12.5 Proving Agents Correct

In this section, we use the programming logic to prove the correctness of the
example shopping agent of the previous chapter. We do not present all the

218 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

details, but provide enough details to illustrate the use of the programming
logic. Before we discuss what it means that an agent program is correct and
provide a proof which shows that our example agent is correct, we introduce
some notation. The notation involves a number of abbreviations concerning
names and propositions in the language of our example agent:

e From now on, instead of the formula current_website(sitename) we sim-
ply write sitename; for example, we write Amazon.com instead of the
proposition current_website(Amazon.com) ,

o As before, the book titles The Intentional Stance and Intentions, Plans
and Practical Reason that the agent intends to buy are abbreviated to T
and I respectively. These conventions can result in formulas like B(T),
which means that the agent is at the web page concerning the book The
Intentional Stance.

A simple and intuitive correctness property, which is natural in this context
and is applicable to our example agent, states that a GOAL agent is correct
when the agent program realises the initial goals of the agent. For this sub-
class of correctness properties, we may consider the agent to be finished upon
establishing the initial goals and in that case the agent could be terminated. Of
course, it is also possible to continue the execution of such agents. This class
of correctness properties can be expressed by means of temporal formulas like
G¢p — oG¢. Other correctness properties are conceivable, of course, but not
all of them can be expressed in the temporal proof logic for GOAL.

12.6 Correctness of the Shopping Agent

From the discussion above, we conclude that the interesting property to prove
for our example program is the following property:

Bceond A G(bought(T) A bought(I)) — B(bought(T) A bought(I))

where Beond is a condition on the initial beliefs of the agent. More specifically,
Bcond is defined by:

B current_webpage(homepage(user)) A —=Bin_cart(T) A —=Bin_cart(I)A
B(Vs,s'((s # s' A current_webpage(s)) — —current_webpage(s')))

The correctness property states that the goal to buy the books The Intentional
Stance and Intentions, Plans and Practical Reason, given some initial conditions
on the beliefs of the agent, leads to buying (or believing to have bought) these
books. Note that this property expresses a total correctness property. It states
both that the program behaves as desired and that it will eventually reach the
desired goal state. Another reason for considering this property to express the
correctness of our example agent is the fact that in case the goals mentioned
are achieved, the agent believes that they are achieved once and for all. That

12.7. INVARIANTS AND FRAME AXIOMS 219

is, the agent will never adopt the same goal again once it is achieved, and, since
the agent will not adopt new goals, once each of the goals has been achieved the
agent has no goals left to achieve and is done.

12.7 Invariants and Frame Axioms

To be able to prove correctness, we need a number of frame axioms. There
is a close relation between frame axioms and invariants of a program. Frame
axioms state which properties are not changed by (particular) actions. We
call a property stable in case that property once it becomes true, remains true
whatever action is performed. The fact that a property p is stable is expressed
by the formula p unless false. In case a stable property holds initially, the
property is called an invariant of the program. Invariant properties always
hold during the execution of an agent. We need frame axioms to prove that a
property is stable or invariant.

For our example program, we have an invariant that states that we cannot
view two web pages at the same time:

inv =BVs,s'((s # s' A current_webpage(s)) — —current_webpage(s'))

To prove that inv is an invariant of the agent, we need frame axioms stating that
when inv holds before the execution of an action it still holds after executing
that action. Formally, for each a € Cap, we need: {inv} a {inv}. These frame
axioms need to be specified by the user, and for our example agent we assume
that they are indeed true. By means of the Consequence Rule (strengthen the
precondition of the Hoare triples for capabilities a) and the Rule for Conditional
Actions (instantiate ¢ and ¢’ with inv), we then obtain that {inv} b {inv} for
all b € II. By theorem 12.4.4, we then know that inv unless false. Because we
also have that initially inv holds since we know that (oo,70) | inv holds for
our shopping agent, we may conclude that init — inv A inv unless false. inv
thus is an invariant and holds at all times during the execution of the agent.
Because of this fact, we do not mention inv explicitly anymore in the proofs
below, but will freely use the property when we need it.
A second property that is stable is the property status(book):

status(book) y (Bin_cart(book) A Gbought(book)) V Bbought(book)

The fact that status(book) is stable means that once a book is in the cart and
it is a goal to buy the book, it remains in the cart and is only removed from the
cart when it is bought.

The proof obligations to prove that status(book) is a stable property, con-
sist of supplying proofs for {status(book)} b {status(book)} for each conditional
action b € II of the shopping agent (cf. theorem 12.4.4). By the Rule for Con-
ditional Actions, therefore, it is sufficient to prove for each conditional action
¥ — do(a) € II that {status(book) A} a {status(book)} and (status(book) A
—p) — status(book). The latter implication is trivial. Moreover, it is clear that

220 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

to prove the Hoare triples it is sufficient to prove {status(book)} a {status(book)}
since we can strengthen the precondition by means of the Consequence Rule.
The proof obligations thus reduce to proving {status(book)} a {status(book)}
for each capability of the shopping agent.

Again, we cannot prove these Hoare triples without a number of frame ax-
ioms. Because no capability is allowed to reverse the fact that a book has been
bought, for each capability, we can specify a frame axiom for the predicate
bought:

(1) {Bbought(book)} a {Bbought(book)}

In case the book is not yet bought, selecting action pay_cart may change the con-
tents of the cart and therefore we first treat the other three actions goto_website,
search, and put_in_shopping_cart which are not supposed to change the contents
of the cart. For each of the latter three capabilities we therefore add the frame
axioms:

{Bin_cart(book) A ~Bbought(book)} a {Bin_cart(book) A ~Bbought(book)}

where a # pay_cart. Note that these frame axioms do not refer to goals but only
refer to the beliefs of the agent, in agreement with our claim that only Hoare
triples for belief updates need to be specified by the user. By using the axiom
Gbhought(book) — —Bbought(book) and the Consequence Rule, however, we can
conclude that:

{Bin_cart(book) A Gbought(book)} a {Bin_cart(book) A —Bbought(book)}
By combining these Hoare triples with the axiom
{Gbought(book)} a {Bbought(book) V Gbought(book)}

by means of the Conjunction Rule and by rewriting the postcondition with the
Consequence Rule, we then obtain

{Bin_cart(book) A Gbought(book)}

(2) a
{Bin_cart(book) A Gbought(book)}

where a # pay_cart. By weakening the postconditions of (1) and (2) by means of
the Consequence Rule and combining the result with the Disjunction Rule, it is
then possible to conclude that {status(book)} a {status(book)} for a # pay_cart.

As before, in the case of capability pay_cart we deal with each of the disjuncts
of status(book) in turn. The second disjunct can be handled as before, but the
first disjunct is more involved this time because pay_cart can change both the
content of the cart and the goal to buy a book if it is enabled. Note that pay_cart
only is enabled in case BContentCart holds. In case BContentCart holds and
pay_cart is enabled, from the effect axiom for pay_cart and the Consequence
Rule we obtain

{Bin_cart(book) A Gbought(book) A BContentCart}
(3) pay_cart
{Bbought(book)}

12.8. PROOF OUTLINE 221

In case =B ContentCart holds and pay_cart is not enabled, we use the Rule for
Infeasible Capabilities to conclude that

{Bin_cart(book) A Gbought(book) A =B ContentCart}
(4) pay_cart
{Bin_cart(book) A Gbought(book) A =B ContentCart}

By means of the Consequence Rule and the Disjunction Rule, we then can
conclude from (1), (3) and (4) that {status(book)} pay_cart {status(book)}, and
we are done.

12.8 Proof Outline

The main proof steps to prove our agent example correct are listed next. The
proof steps below consists of a number of ensures formulas which together
prove that the program reaches its goal in a finite number of steps.

(1) Bhomepage(user) A =Bin_cart(T) A Gbought(T) A =Bin_cart(I)
AGbought(I) ensures
BAmazon.com A —Bin_cart(T) A Gbought(T) A —Bin_cart(I)
AGbought(I)
(2) BAmazon.com A —Bin_cart(T) A Gbought(T) A —Bin_cart(I)
AGbought(I) ensures
[(B(T) A Gbought(T) A —Bin_cart(I) A Gbought(I))V
(B(I) A Gbought(I) A —=Bin_cart(T) A Gbought(T))]

(3) B(T) A Gbought(T) A —=Bin_cart(I) A Gbought(I) ensures
Bin_cart(T) A Gbought(T) A —=Bin_cart(I) A Gbought(I)
ABContentCart

(4) Bin_cart(T) A Gbought(T) A —=Bin_cart(I) A Gbought(I) ensures
BAmazon.com A =Bin_cart(I) A Gbought(I) A status(T)

(5) B(Amazon.com) A —Bin_cart(I) A Gbought(I) A status(T) ensures
B(I) A Gbought(I) A status(T)

(6) B(I) A Gbought(I) A status(T) ensures
Bin_cart(I) A Gbought(I) A BContentCart A status(T)

(7) Bin_cart(I) A Gbought(I) A BContentCart A status(T) ensures
Bbought(T) A Bbought(I)

At step 3, the proof is split up into two subproofs, one for each of the disjuncts
of the disjunct that is ensured in step 2. The proof for the other disjunct is
completely analogous. By applying the rules for the ‘leads to’ operator the
third to seventh step result in:

(a) B(T) A Gbought(T) A —~Bin_cart(I) A Gbought(I) —
Bbought(T) A Bbought(I)

(b) B(I) A Gbought(I) A =Bin_cart(T) A Gbought(T) —
Bbought(T) A Bbought(I)

222 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

Combining (a) and (b) by the disjunction rule for the ‘leads to’ operator and by
using the transitivity of ‘leads to’ we then obtain the desired correctness result:

Bcond A G(bought(T) A bought(I)) — B(bought(T) A bought(I))

with Beond as defined previously.

Step 1 We now discuss the first proof step in somewhat more detail. The
remainder of the proof is left to the reader. The proof of a formula ¢ ensures v
requires that we show that every action b in the Personal Assistant program
satisfies the Hoare triple {¢ A =90} b {¢ V ¢} and that there is at least one
action b’ which satisfies the Hoare triple {¢ A ¢} b’ {¢}. By inspection of the
program, in our case the proof obligations turn out to be:

{Bhomepage(user) A ~Bin_cart(T) A Gbought(T)A
—Bin_cart(I) A Gbought(I)}
b
{Bhomepage(user) A ~Bin_cart(T) A Gbought(T)A
—Bin_cart(I) A Gbought(I) }

where b is one of the actions

B(Amazon.com) A —B(in_cart(book)) A G(bought (book))

— do(search(book)),
B(book) A G(bought(book)) — do(put_in_shopping_cart(book)),
B(in_cart(book)) A G(bought(book)) — do(pay—_cart)}

and

{Bhomepage(user) A ~Bin_cart(T) A Gbought(T)A
—Bin_cart(I) A Gbought(I)

}

B(homepage(user) V ContentCart) A G(bought(book))
— do(goto_website(Amazon.com))

{BAmazon.com A —Bin_cart(T) A Gbought(T)A

—Bin_cart(I) A Gbought(I)

}

The proofs of the first three Hoare triples are derived by using the Rule for
Conditional Actions. The key point is noticing that each of the conditions of
the conditional actions involved refers to a web page different from the web page
homepage(user) referred to in the precondition of the Hoare triple. The proof
thus consists of using the fact that initially Bhomepage(user) and the invariant
inv to derive an inconsistency which immediately yield the desired Hoare triples
by means of the Rule for Conditional Actions.

To prove the Hoare triple for

B(homepage(user) V ContentCart) A G(bought(book))
— do(goto_website(Amazon.com))

12.9. CONCLUSION 223

we use the effect axiom (5) for goto_website and the frame axiom (6):

{Bhomepage(user)}
(5) goto_website(Amazon.com)
{BAmazon.com}
and
{-Bin_cart(book) A =Bbought(book)}
(6) goto_website(Amazon.com)
{—-Bin_cart(book) A =Bbought(book)}

By using the axiom

{Gbought(book)}
goto_website(Amazon.com)
{Bbought(book) vV Gbought(book)}

the Conjunction Rule and the Rule for Conditional Actions it is then not difficult
to obtain the desired conclusion.

12.9 Conclusion

In this chapter, we discussed a programming logic for GOAL. GOAL and its
associated programming logic provide a complete programming theory. The
theory includes a concrete proposal for a programming language and a formal,
operational semantics for this language as well as a corresponding proof the-
ory based on temporal logic. The logic enables reasoning about the dynamics of
agents and about the beliefs and goals of the agent at any particular state during
its execution. The semantics of the logic is provided by the GOAL program se-
mantics which guarantees that properties proven in the logic are properties of a
GOAL program. In contrast with other attempts (Shoham 1993, Wobcke 2000)
to bridge the gap, our programming language and programming logic thus are
based on the same semantics. Because of this strong connection between the
programming language and its programming logic, we can be sure that state-
ments proven in the logic concern properties of the agent. By providing a formal
relation between the agent programming language GOAL and associated agent
logic, we were able to bridge the gap between theory and practice. Moreover,
a lot of work has already been done in providing practical verification tools for
temporal proof theories (Vos 2000), which can be readily used to verify proper-
ties of GOAL agents.

There are a number of interesting extensions and problems that still are to
be investigated in relation to the programming logic. For example, it would be
interesting to develop a semantics for the programming logic for GOAL that
would allow the nesting of the belief and goal operators. In the programming
logic, we cannot yet nest knowledge modalities which would allow an agent
to reason about its own knowledge or that of other agents. Moreover, it is
not yet possible to combine the belief and goal modalities. It is therefore not

224 CHAPTER 12. TEMPORAL LOGIC FOR GOAL

possible for an agent to have a goal to obtain knowledge, nor can an agent have
explicit rather than implicit knowledge about its own goals or those of other
agents. So far, the use of the B and G operators in GOAL is, first of all, to
distinguish between beliefs and goals. Secondly, it enables an agent to express
that it does not have a particular belief or goal (consider the difference between
-B¢ and B—¢). Another important research issue concerns an extension of the
programming framework to incorporate first order languages and extend the
programming logic with quantifiers. Finally, more work needs to be done to
investigate and classify useful correctness properties of agents. In conclusion,
whereas the main aim may be a unified programming framework which includes
both declarative goals and planning features, there is still a lot of work to be
done to explore and manage the complexities of the language GOAL itself.

CHAPTER 13

Conclusion

The study of intelligent agents has been approached in this thesis by studying
agent programming languages. It was argued that agent languages offer a parti-
cularly suitable framework for studying intelligent agents because they define in
a concise and elegant way the basic concepts associated with agents and provide
an implementation platform at the same time. Moreover, a formal approach to
agent languages as undertaken here may be one of the most promising roads to
bridging the gap between agent theory and the practical engineering of agents.

Part I

In part I, a concrete proposal for an agent language is introduced. The core
agent language 3APL is both informally and formally introduced in chapters 2
and 3. The basic concepts are identified and the notions of a belief, a goal, and
plan are incorporated into the language. Actually, goals and plans are more or
less identified in 3APL since a procedural perspective on goals is taken. Goals in
3APL are so-called goals-to-do which specify a plan of action. Plans are stored
in a plan library in a 3APL agent by means of so-called plan rules. However,
plan rules are not the only type of rules that are available to a 3APL agent. A
more general type of rule called practical reasoning rules provide the agent with
reflective and reactive capabilities.

In the agent programming language 3APL, three conceptual levels can be
distinguished. That of a belief, a goal, and a practical reasoning rule. These
conceptual levels are separated in such a way that only goals are allowed to
modify beliefs, and only practical reasoning rules are allowed to modify the
goals or plans of an agent. At the most basic level, the beliefs of an agent
represent the current situation from the agent’s point of view. At the second
level, the execution of goals result in updates on the belief base of an agent by
adding and deleting information. At the third level, practical reasoning rules
supply the agent with reflective capabilities to modify its goals.

225

226 CHAPTER 13. CONCLUSION

In chapter 3, an operational semantics for 3APL is defined. The SOS se-
mantics of (Plotkin 1981) has been used to formally define the meaning of the
constructs in the language. From this formal specification, it becomes clear that
3APL can be viewed as a combination of imperative and logic programming.
Whereas imperative programming constructs are used to program the usual flow
of control from imperative programming and to update the current beliefs of the
agent by executing basic actions, logic programming implements the querying
of the belief base of the agent and the parameter mechanism of the language
based on computing bindings for variables.

Practical reasoning rules are a distinguishing feature of 3APL. In chapter 4,
the application and use of these rules is studied in more detail. The practical
reasoning rules of 3APL agents provide a powerful mechanism for goal and plan
revision. A classification of practical reasoning rules in different rule classes
is proposed as a guide to their use. Four classes are identified: failure rules,
plan rules, condition-action rules and optimisation rules. The expressive power
of rules is illustrated by an application of two types of rules. Condition-action
rules are used to implement a post operator for the creation of new goals. Failure
rules are used to implement different monitoring facilities. Two such facilities
are implemented: disruptors and interrupts. It turned out that the combination
of practical reasoning rules and priorities is especially interesting and deserves
further study. Priorities provide a means to increase the control over the appli-
cation of rules.

In chapter 5, the single agent language 3APL introduced in the previous
chapters is extended to a multi-agent language. This extension involves the
incorporation of communication mechanisms into the language. To this end,
two new pairs of primitives are introduced. The first pair is designed in par-
ticular for the exchange of information, whereas the second set is designed for
the communication of requests. A formal semantics for these primitives has
been provided. This semantics aims at capturing what we called the successful
processing of a received message by the hearer. The focus in the semantics thus
is on the receiver of a message. Moreover, the semantics of communication is
designed in such a way that the communication actions fit in naturally with the
other constructs of the programming language. In this respect, our approach
differs from other approaches that aim at designing a ‘universal’ communication
language for agents like KQML and FIPA-ACL but that do not explain how the
communication language can be integrated within an agent framework.

Finally, in chapter 6, the use of the multi-agent language 3APL is illustrated
by a meeting scheduling example. A multi-stage negotiation protocol has been
used to solve the meeting scheduling problem. The implementation is both nat-
ural and concise and thus provides support for the conclusion that the agent
programming language offers a powerful and promising alternative to engineer-
ing software. In particular with respect to so-called personal assistants, the
agent programming paradigm may be preferred over other alternatives.

227

Part 11

In part II, the main theme is a comparison of 3APL with other agent lan-
guages. The emphasis is put on a formal comparison with languages that are
similar enough to allow for such a formal approach. The agent languages that
we study are AGENTO, AgentSpeak(L) and ConGolog. These agent languages
each attempt to incorporate the most important agent concepts and transform
the metaphor of an intelligent agent into an operational framework. Since each
of these languages is conceived of in much the same way as 3APL, it is especially
appropriate and interesting to compare them. Such a comparison both provides
more insight into the basic concepts associated with agents as well as that it
provides for an assessment of the unique features within each of the alternative
agent languages.

Unfortunately, one of the first agent programming languages proposed in
the literature - AGENTO - does not come with a formal semantics. Since such
a formal semantics is a condition for a formal comparison, it is not possible to
relate AGENTO and 3APL in a rigorous and formal way. However, in chapter 7
we take the informal presentation of AGENTO as a starting point for formalisa-
tion and attempt a formal definition of the operational semantics of AGENTO.
To this end, we abstracted from a number of features of AGENTO to capture
the core of AGENTO. We called this core the single agent core of AGENT(. Tt
includes the beliefs, capabilities, commitments, and commitment rules. Time
and communication are not included in the single agent core. For this subset of
AGENTO, we then construct an operational semantics.

The design of a formal semantics for AGENTO reveals the basic differences
and similarities between AGENTO0 and 3APL. The basic features of AGENTO
are very similar to those of 3APL. The main difference, however, stems from the
different types of rules used in both languages. AGENTO allows the introduction
of a new commitment to an action in case a specific commitment is absent. 3APL
does not allow this, but instead allows the arbitrary revision of goals.

The other two languages that we study in part II, AgentSpeak(L) and Con-
Golog, are both provided with a formal operational semantics. An operational
semantics that formally defines the behaviour of an agent allows for a formal
comparison and in chapter 8 we develop a methodology for such a comparison
of agent languages. In particular, the method that is developed supports a com-
parison of the relative expressive power of two languages. The method is based
on the comparison of the (observable) behaviour of agents. The most impor-
tant concept developed in this chapter is that of a translation bisimulation. A
translation bisimulation systematically associates agents from a so-called tar-
get language with every agent from a source language. Agents from the source
language then can be simulated by agents from the target language if a ‘natu-
ral’ translation exists and the agents of the target language generate the same
behaviour as that of the agents from the source language. The conditions un-
der which a translation is considered natural and agents generate the same
behaviour are captured in the formal definition of a translation bisimulation.

By using the methodology for comparison of chapter 8, in chapter 9 we show

228 CHAPTER 13. CONCLUSION

that 3APL has at least the same expressive power of AgentSpeak(L). The proof
of this claim focuses on the main conceptual differences between both languages:
the concept of an event and of an intention that are part of AgentSpeak(L) but
not of 3APL. It is shown that the former can be eliminated from AgentSpeak(L)
without reducing its expressive power and that the latter can be translated into
3APL goals. We conjecture that 3APL has more expressive power than Agent-
Speak(L) since only plan rules are needed to simulate AgentSpeak(L). Practical
reasoning rules with a more complex structure than the plan rules of Agent-
Speak (L) are not used to establish the simulation result.

In the final chapter of part II, the languages ConGolog and 3APL are for-
mally compared. ConGolog is a programming language that extends so-called
basic action theories which are specified in the situation calculus with constructs
for building composed programs. We show that - given a number of reasonable
assumptions - ConGolog can be embedded in 3APL. 3APL thus has at least
the expressive power of ConGolog. An interesting conclusion that follows from
this result is that basic action theories of the situation calculus can be used to
specify the update semantics of basic actions for 3APL agents.

Although the embedding result shows that ConGolog and 3APL are closely
related programming languages, the philosophy that inspired the design of both
languages is quite different. ConGolog is presented as a high-level programming
alternative to planning. The main focus is on extracting a legal action sequence
- or a plan - from a nondeterministic program. 3APL is presented as an agent
language. The focus is on computing with high-level information represented
by the belief base of an agent through the execution of the goals and plans of
that agent.

Part II1

The design of a programming framework for intelligent agents resulted in
part I of this thesis in the programming language 3APL. 3APL supports the
construction of intelligent agents, and reflects in a natural way the intentional
concepts used to design agents. 3APL is a very powerful agent language, as is
shown in part II. It allows the construction of a multi-agent system in which
agents communicate their beliefs, requests, perform actions, and construct plans
to achieve their goals.

The first two parts thus introduce 3APL and illustrate its power by way of a
meeting scheduling example and by means of comparison with other languages.
In these parts, however, we do not discuss what an agent logic for SAPL might
look like. Since one of the aims of this thesis is to bridge the gap between agent
theory and agent practice, in part III we study how such a relation can be estab-
lished. The starting point that we take is that an agent theory should be more
or less similar to a BDI logic (Rao 1996b). By making this choice, however, we
run into immediate problems. One of the most prominent differences between
agent logics like BDI logic and agent programming frameworks like 3APL con-
cerns the notion of a goal. The concept of a goal (or intention) in such logics is

229

a declarative notion, whereas the concept of a goal in most agent programming
languages is a procedural notion. As further support for the conclusion that
there exists a mismatch between the two, in (Hindriks et al. n.d.) we show that
a dynamic logic extended with a belief modality provides an appropriate proof
theory for 3BAPL agents. A modality that corresponds to a motivational attitude
of 3APL agents is not present and neither is it very clear how to incorporate
such a notion in a proof theory for 3APL.

We conclude that a new road has to be taken to establish the desired link
between agent theory and agent programming. To this end, we introduce the
agent language GOAL (for Goal Oriented Agent Language) in chapter 11. The
main difference between GOAL and 3APL is that GOAL does incorporate a
declarative concept of a goal, whereas 3APL does not. A formal, operational
semantics for GOAL is defined that can also be used for the design of a a BDI-
like agent logic.

In chapter 12, a programming logic for GOAL based on the operational
semantics of GOAL is discussed. The GOAL programming logic is a BDI-like
logic that enables reasoning about the dynamics of agents and about the beliefs
and goals of such agents at any particular state during its execution. GOAL
and its associated programming logic provide a complete agent programming
theory. The theory includes a concrete proposal for a programming language
and a formal, operational semantics for this language as well as a corresponding
proof theory based on temporal logic. The GOAL framework thus provides for
a concrete proposal to bridge the gap between agent theory and practice.

Future Work

Throughout this thesis the reader will encounter many points of departure
for future work. Here, we outline what we think are the more interesting oppor-
tunities for future research. As far as the agent language 3APL is concerned,
it shares many features with other languages. The two features that make
it unique are its notion of a practical reasoning rule and its particular set of
communication actions. Although a detailed study of practical reasoning rules
was attempted in chapter 4, a lot of work remains to be done. A particu-
larly interesting issue concerns a more detailed study of the interaction between
priorities associated with computation steps and the application of rules. More-
over, since practical reasoning rules actually allow the self-modification of an
agent program, many issues need to be dealt with. In particular, it becomes
much harder to reason about such agent programs and a general agent theory
of self-modifying 3APL agents that takes this feature into account needs to be
developed. The approach taken in (Hindriks et al. n.d.) does not work in this
more general case, and we suggest that a continuation semantics (cf. Nielson &
Nielson (1992)) might be used for this purpose.

The formal definition of a semantics for communication only provides a start-
ing point for a much broader investigation that involves the study of communi-
cation protocols and the introduction of (sub)group structures into multi-agent

230 CHAPTER 13. CONCLUSION

systems. As we discussed in chapter 5, even the particular semantics for the
communication actions leaves room for many choices. By experimenting with
different types of semantics, it might be decided which is to be preferred. As in
the case of practical reasoning rules, a proof theory for a multi-agent system of
communicating agents still needs to be formulated.

A number of agent languages have been compared in this thesis and it was
established that AGENTO, AgentSpeak(L), ConGolog and 3APL form a close
family of related agent languages. Despite their similarity, still each of these
languages has its own features and it would be interesting to explore in more
detail if, and how, features from one framework can be imported within another
framework. Since these languages are so closely related to each other, ideas used
to create a proof theory, for example, for one of these language could also work
for some of the others.

The second agent language that we studied, the language GOAL, we feel,
almost raises as many issues as that it answers. GOAL is one of the first
concrete proposals to bridge the gap between agent theory and practice, but as
such leaves many opportunities for future research. First of all, it is natural to
ask why two agent languages were introduced in this thesis. It is clear that both
languages include different features, but why did we not combine these features
into a single language? The problem is that this is quite hard. To integrate
the more sophisticated planning capabilities of 3BAPL into GOAL would almost
certainly lead us back to the question what a proof theory for such a combination
would look like. To integrate declarative goals into 3APL, however, also raises
many new issues. For example, how do we manage the interaction between
a declarative goal base and a dynamic plan base (the procedural goal base of
3APL). At the moment, we do not know how to solve these problems. A more
promising extension of GOAL involves the incorporation of communication into
the language. Because GOAL includes declarative goals, it may be a realistic
option and indeed would be very interesting to see whether or not a semantics
for communication that is more similar to that of speech acts can be developed
for GOAL.

Apart from the programming language GOAL, the programming logic for
GOAL raises just as many interesting issues. For example, it would be very
interesting to develop a semantics for the programming logic for GOAL that
would allow the nesting of the belief and goal operators. This is not yet possi-
ble and an agent cannot yet reason about its own knowledge or that of other
agents. Neither is it possible to combine the belief and goal modalities. Another
important research issue concerns an extension of the programming framework
to incorporate first order languages and extend the programming logic to a first
order logic. Finally, more work needs to be done to investigate and classify
useful correctness properties of agents.

We conclude with a general remark. Our aim has been to show that in-
telligent agents provide a very promising new programming paradigm and to
support this claim by providing a concrete framework for programming agents.
Even if the reader is not convinced by our work, our hope is that we convincingly
showed the use of formal techniques and ideas from the area of programming

231

semantics and concurrency theory as a means to clarify the notion of an in-
telligent agent that was the major theme of this thesis. We believe it remains
fruitful to explore and exploit ideas and techniques from these areas as much as
possible.

232 CHAPTER 13. CONCLUSION

BIBLIOGRAPHY

Andrews, Gregory R. (1991), Concurrent Programming: Principles and Prac-
tice, The Benjamin/Cummings Publishing Company.

Bach, Kent & Robert M. Harnish (1979), Linguistic Communication and Speech
Acts, MIT Press.

Baecker, Ronald M. (1993), Readings in Groupware and Computer Supported
Cooperative Work: Software to Facilitate Human-Human Collaboration,
Morgan Kaufman.

Bratman, Michael E. (1987), Intentions, Plans, and Practical Reasoning, Har-
vard University Press.

Chandy, K. Mani & Jayadev Misra (1988), Parallel Program Design, Addison-
Wesley.

Chellas, Brian F. (1980), Modal logic: an introduction, Cambridge University
Press.

Cohen, Philip R. & Hector J. Levesque (19904), ‘Intention is choice with com-
mitment’, Artificial Intelligence 42, 213-261.

Cohen, Philip R. & Hector J. Levesque (1990b), Rational Interaction as the Basis
for Communication, in P.Cohen, J.Morgan & M.Pollack, eds, ‘Intentions
in Communication’, MIT Press.

Cohen, Philp R. & Hector J. Levesque (1995), Communicative Actions for Artifi-
cial Agents, in ‘Proceedings of the International Conference on Multi-Agent
Systems’, AAAT Press.

Colombetti, Marco (2000), Semantic, Normative and Practical Aspects of Agent
Communication, in F.Dignum & M.Greaves, eds, ‘Issues in Agent Commu-
nication’, Springer-Verlag, pp. 17-30.

233

234 BIBLIOGRAPHY

Conry, Susan E., Robert A. Meyer & Victor R. Lesser (1988), Multistage Ne-
gotiation in Distributed Planning, in A.Bond & L.Gasser, eds, ‘Readings
in Distributed Artificial Intelligence’, Morgan Kaufman, pp. 367-384.

d’Inverno, Mark, David Kinny, Michael Luck & Michael Wooldridge (1998), A
Formal Specification of AMARS, in M.Singh, A.Rao & M.Wooldridge, eds,
‘Intelligent Agents IV (LNAI 1365)’, pp. 155-176.

d’Inverno, Mark & Michael Luck (1998), ‘Engineering AgentSpeak(L): A Formal
Computational Model’, Journal of Logic and Computation 8(3).

Dragoni, Aldo F., Paolo Giorgini & Luciano Serafini (to appear), Updating
Mental States from Communication, in C.Castelfranchi & Y.Lésperance,
eds, ‘Intelligent Agents VII’, Springer-Verlag.

Dunin-Keplicz, Barbara & Jan Treur (1995), Compositional Formal Specifica-
tion of Multi-Agent Systems, in M.Wooldridge & N.Jennings, eds, ‘Intelli-
gent Agents (LNAT 890)’, Springer-Verlag, pp. 102-117.

Eijk, Rogier M. van, Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (1998), Systems of communicating agents, in H.Prade, ed., ‘Pro-
ceedings of 13th biennial European Conference on Artificial Intelligence
(ECAT'98)’, John Wiley and Sons, pp. 293-297.

Eijk, Rogier M. van, Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (1999), Information-Passing and Belief Revision in Multi-Agent Sys-
tems, in J. P. M.Miiller, M. P.Singh & A. S.Rao, eds, ‘Intelligent Agents V
(LNAI 1555)’, Springer-Verlag, pp. 29-45.

Enderton, Herbert B. (1972), A Mathematical Introduction to Logic, Academic
Press.

Felleisen, Matthias (1990), On the expressive power of programming languages,
in G.Goos & J.Hartmanis, eds, ‘3rd European Symposium on Programming
(LNCS 432)’, Springer-Verlag, pp. 134-151.

FIPA (1998), ‘FIPA 97 Specification, Part 2, Agent Communication Language’.

Fisher, Michael (1994), A Survey of Concurrent MetateM - The Language and
its Applications, in ‘Proceedings of First International Conference on Tem-
poral Logic (LNCS 827)’, Springer-Verlag, pp. 480-505.

Franklin, Stanley P. & Arthur C. Graesser (1997), Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents, in ‘Intelligent Agents ITT
(LNAI 1193)’, Springer-Verlag, pp. 21-36.

Gardenfors, Peter (1988), Knowledge in Fluz: Modelling the Dynamics of Epis-
temic States, MIT Press.

BIBLIOGRAPHY 235

Giacomo, Giuseppe de, Yves Lespérance & Hector Levesque (2000), ‘ConGolog,
a Concurrent Programming Language Based on the Situation Calculus’,
Artificial Intelligence 121(1-2), 109-169.

Giacomo, Guiseppe de & Hector J. Levesque (1998), An incremental interpreter
for high-level programs with sensing, Technical report, Department of Com-
puter Science, University of Toronto.

Giacomo, Guiseppe de, Yves Lespérance & Hector J. Levesque (1997), Rea-
soning about concurrent execution, prioritized interrupts, and exogenous
actions in the situation calculus, in M. E.Pollack, ed., ‘Proceedings of the
fifteenth International Joint Conference on Artificial Intelligence’, Morgan
Kaufman, pp. 1221-1226.

Groenendijk, Jeroen & Martin Stokhof (1984), On the Semantics of Questions
and the Pragmatics of Answers, in F.Landman & F.Veltman, eds, ‘Varieties
of Formal Semantics’, Foris, pp. 143-170.

Groote, Jan Friso (1993), ‘Transition System Specifications with Negative
Premises’, Theoretical Computer Science 118(2), 263-299.

Harel, David (1979), First-order dynamic logic (LNCS 68), Springer-Verlag.

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (1998), Formal Semantics for an Abstract Agent Programming Lan-
guage, in M.Singh, A.Rao & M.Wooldridge, eds, ‘Intelligent Agents IV
(LNAT 1365)’, Springer-Verlag, pp. 215-229.

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (1999a), ‘Agent Programming in 3APL’, Autonomous Agents and
Multi-Agent Systems 2(4), 357—401.

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (1999b), Control Structures of Rule-Based Agent Languages, in
J. P.Miiller, M. P.Singh & A. S.Rao, eds, ‘Intelligent Agents V (LNAI
1555)’, Springer-Verlag, pp. 381-396.

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek & John-Jules Ch.
Meyer (n.d.), ‘A Programming Logic for the Agent Programming Language
3APL’, to appear .

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek & John-Jules Meyer
(1999¢), An Operational Semantics for the Single Agent Core of AGENT-
0, Technical Report UU-CS-1999-30, Department of Computer Science,
University Utrecht.

Hoare, C.A.R. (1985), Communicating Sequential Processes, Prentice Hall.

236 BIBLIOGRAPHY

Hoek, Wiebe van der, Bernd van Linder & John-Jules Ch. Meyer (1994), A logic
of capabilities, in A.Nerode & Y.Matiyasevich, eds, ‘Proc. of the third int.
symposium on the logical foundations of computer science (LNCS 813)’,
Springer-Verlag, pp. 366-378.

Hoyle, Michelle A. & Christopher Lueg (1997), Open Sesame!: A Look at Per-
sonal Assistants, in ‘Proceedings of the International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM 97)’, pp. 51-60.

Jennings, Nick R. & A.J. Jackson (1995), ‘Agent based meeting scheduling: A
Design and Implementation’, Electronics Letters, The Institution of Elec-
trical Engineering 31(5), 350-352.

Jones, Andrew J.I. (1993), ‘Practical Reasoning, California-style: Some Re-
marks on Shoham’s Agent-oriented Programming (AOP)’.

Kautz, Henry A., Bart Selman, Michael Coen, Steven Ketchpel & Chris Ram-
ming (1994), An Experiment in the Design of Software Agents, in ‘Proc.
of AAAT-94’, AAAT Press.

Labrou, Yannis & Tim Finin (1994), A semantics approach for KQML - a
general purpose communication language for software agents, in ‘Third
International Conference on Information and Knowledge Management
(CIKM’94)’.

Lennon, Jennifer & Arnould Vermeer (1995), ‘From Personal Computer to Per-
sonal Assistant’, Journal of Universal Computer Science 1(6), 410-422.

Lespérance, Yves, Hector J. Levesque, Fanghzen Lin, Daniel Marcu, Ray Reiter
& Richard B. Scherl (1996), Foundations of a Logical Approach to Agent
Programming, in M.Wooldridge, J.Miiller & M.Tambe, eds, ‘Intelligent
Agents II (LNAI 1037)’, Springer-Verlag, pp. 331-346.

Levesque, Hector J., Ray Reiter, Yves Lespérance, Fangzhen Lin & Richard B.
Scherl (1997), ‘GOLOG: A logic programming language for dynamic do-
mains’, Journal of Logic Programming 31, 59-84.

Lin, Fangzhen & Ray Reiter (1997), ‘How to Progress a Database’, Artificial
Intelligence 92, 131-167.

Linder, Bernd van, Wiebe van der Hoek & John-Jules Ch. Meyer (1996), For-
malising motivational attitudes of agents: On preferences, goals, and com-
mitments, in M.Wooldridge, J.Miiller & M.Tambe, eds, ‘Intelligent agents
IT (LNAT 1037)’, Springer-Verlag, pp. 17-32.

Lloyd, John W. (1987), Foundations of Logic Programming, Springer-Verlag.

Maes, Pattie (1994), ‘Agents that Reduce Work and Information Overload’,
Communications of the ACM 37(7), 30-40.

BIBLIOGRAPHY 237

Manna, Zohar & Amir Pnueli (1992), The Temporal Logic of Reactive and Con-
current Systems, Springer-Verlag.

Mayer, Martha C. & Fiora Pirri (1996), ‘Abduction is not Deduction-in-
Reverse’, Journal of the Interest Group in Pure and Applied Logics 4(1), 1-
14.

McCarthy, John & Patrick J. Hayes (1969), Some philosophical problems from
the standpoint of artificial intelligence, in Meltzer & Michie, eds, ‘Machine
Intelligence’, Edinburgh University Press, pp. 463-502.

Mendelson, Elliott (1979), Introduction to Mathematical Logic, D. Van Nostrand
Company.

Meyer, John-Jules Ch., Wiebe van der Hoek & Bernd van Linder (1999), ‘A
Logical Approach to the Dynamics of Commitments’, Aritificial Intelli-
gence 113, 1-40.

Milner, Robin (1989), Communication and Concurrency, Prentice Hall.

Minker, Jack, ed. (1988), Foundations of deductive databases and logic program-
ming, Morgan Kaufmann.

Nielson, Hanne Riis & Flemming Nielson (1992), Semantics with Applications:
A Formal Introduction, Wiley.

Oérez, Asunciéon Goémez & V. Richard Benjamins (1999), Overview
of Knowledge Sharing and Reuse Components: Ontologies and
Problem-Solving Methods, in V.Benjamins, ed., ‘Proceedings of
the IJCAI-99 workshop on Ontologies and Problem-Solving Meth-
ods (KRR5)’, CEUR Publications (http://SunSITE.Informatik. RWTH-
Aachen.DE/Publications/CEUR-WS/).

Papadopoulos, George A. & Farhad Arbab (1998), Coordination models and
languages, in ‘Advances in Computers: The Engineering of Large Systems’,
Academic Press, pp. 329-400.

Park, David M. R. (1980), Concurrency and Automata on Infinite Sequences
(LNCS 104), Springer-Verlag.

Pirri, Fiora & Ray Reiter (1999), ‘Some Contributions to the Metatheory of the
Situation Calculus’, Journal of the ACM 46(3), 261-325.

Plotkin, G. (1981), A structural approach to operational semantics, Technical
report, Aarhus University, Computer Science Department.

Poggi, Agostini (1995), DAISY: An object-oriented system for distributed arti-
ficial intelligence, in M.Wooldridge & N.Jennings, eds, ‘Intelligent Agents
(LNAI 890)’, Springer-Verlag, pp. 341-354.

238 BIBLIOGRAPHY

Poole, David (1989), ‘Explanation and prediction: An architecture for default
and abductive reasoning’, Computational Intelligence 5(1).

Rao, Anand S. (1996a), AgentSpeak(L): BDI Agents Speak Out in a Logi-
cal Computable Language, in W.van der Velde & J.Perram, eds, ‘Agents
Breaking Away (LNAI 1038)’, Springer-Verlag, pp. 42-55.

Rao, Anand S. (1996b), Decision Procedures for Propositional Linear-Time
Belief-Desire-Intention Logics, in M.Wooldridge, J.Miiller & M.Tambe, eds,
‘Intelligent Agents IT (LNAT 1037)’, Springer-Verlag, pp. 33-48.

Rao, Anand S. (1997), ‘Private communication’.

Rao, Anand S. & Michael P. Georgeff (1990), Intentions and Rational Com-
mitment, Technical Report 8, Australian Artificial Intelligence Institute,
Melbourne, Australia.

Reiter, Ray (1991), The Frame Problem in the Situation Calculus: A Simple
Solution (Sometimes) and a Completeness Result for Goal Regression, in
‘Artificial Intelligence and Mathematical Theory of Computation: Papers
in Honor of John McCarthy’, Academic Press, pp. 359-380.

Searle, John R. (1969), Speech acts, Cambridge University Press.

Segerberg, Krister (1970), ‘Modal logics with linear alternative relations’, Theo-
ria 36, 301-322.

Sen, Sandip & Edmund Durfee (1996), ‘A Contracting Model for Flexible Dis-
tributed Scheduling’, Annals of Operations Research 65, 195-222.

Shoham, Yoav (1991), Implementing the Intentional Stance, in R.Cummins &
J.Pollock, eds, ‘Philosophy and AI: Essays at the Interface’, MIT Press,
chapter 11, pp. 261-277.

Shoham, Yoav (1993), ‘Agent-oriented programming’, Artificial Intelligence
60, 51-92.

Shoham, Yoav (1994), Agent Oriented Programming: An overview of the frame-
work and summary of recent research, in J.-M. F.Masuch & L.Pdlos, eds,
‘Knowledge representation and reasoning under uncertainty, logic at work
(LNAT 808)’, Springer-Verlag, pp. 123-129.

Singh, Munindar .P. (1994), Multiagent systems (LNAT 799), Springer-Verlag.
Stefik, Mark (1995), Introduction to Knowledge Systems, Morgan Kaufman.

Tennent, Robert D. (1991), Semantics of Programming Languages, Prentice
Hall.

Thomas, Sarah Rebecca (1993), PLACA, An Agent Oriented Programming Lan-
guage, PhD thesis, Department of Computer Science, Stanford University.

BIBLIOGRAPHY 239

Torrance, Mark C. (1991), ‘The AGENTO Manual’.

Vos, Tanja (2000), UNITY in Diversity, PhD thesis, Department of Computer
Science, Utrecht University.

Wobcke, Wayne (2000), On the Correctness of PRS Agent Programs, in
N.R. Jennings and Y. Lespérance, ed., ‘Intelligent Agents VI (LNAI 1757),
Springer-Verlag.

Wooldridge, Michael J. (1997), A Knowledge-Theoretic Semantics for Concur-
rent MetateM, in J.Miiller, M.Wooldridge & N.Jennings, eds, ‘Intelligent
Agents III (LNAI 1193)’, Springer, pp. 357-374.

Samenvatting

In dit proefschrift wordt een nieuwe visie (paradigma) ontwikkeld op hoe een
software probleem zou kunnen worden aangepakt. Een paradigma biedt hand-
vaten voor het ontwikkelen van software en probeert een brug te slaan tussen
de structuur van het alledaagse denken en de manier waarop software opereert.
Hier wordt er dus naar gestreefd om de visie op het ontwikkelen van software
zo natuurlijk mogelijk aan te laten sluiten bij de structuur van denken van het
alledaagse denken.

Het idee is om een programma te zien als een assistent (een intelligent agent)
die het initiatief neemt om de gebruiker te helpen bij het uitvoeren van bepaalde
activiteiten. Een intelligent agent kan opdrachten ontvangen in een taal die
zowel voor de agent als voor de gebruiker van de agent goed te begrijpen is.

Het belangrijkste probleem bestaat uit het vinden van een dergelijke taal.
Omdat deze taal moet aansluiten bij het alledaagse denken, wordt begonnen
met het analyseren van alledaagse begrippen. In de taal van alledag spelen
drie begrippen een belangrijke rol: kennis, doelen, en plannen. Kennis verwijst
naar alles wat we weten. Een doel verwijst naar wat we willen bereiken. En
een plan beschrijft op welke manier een doel kan worden bereikt. Verder moet
men om een plan uit te kunnen voeren over de juiste vaardigheden beschikken.
Vaardigheid is het vierde en laatste begrip dat wordt gebruikt om een intelligent
agent te definiéren.

De vier begrippen die werden gedestilleerd uit de alledaagse taal leveren
dus de bouwstenen voor een nieuw agent paradigma. Om intelligent agents te
ontwikkelen, moet een een programma worden uitgerust met de juiste vaardighe-
den, kennis, doelen en plannen. In het bijzonder zijn we geinteresseerd hoe een
intelligent agent kan worden geinstrueerd oftewel geprogrammeerd.

Programmeertalen voor intelligent agents is het hoofdthema van dit proef-
schrift. In het eerste deel worden de vier basisbegrippen die hierboven werden
opgesomd gebruikt voor het ontwerpen van de agent programmeertaal 3APL.

241

In hoofdstuk 2 wordt 3APL geintroduceerd. Een programma in 3APL is een
intelligent agent die in staat is bepaalde acties uit te voeren, kan worden uit-
gerust met initiéle kennis en doelen, en plannen kan construeren om die doelen
te bereiken. Plannen kunnen worden bedacht door een agent met behulp van
bepaalde regels. In 3APL worden zulke regels practical reasoning rules genoemd.
Een regel vertelt een agent welk plan bij een bepaald doel en bepaalde situatie
past. Als ik bijvoorbeeld de eerstvolgende trein naar Groningen wil halen en
weet dat de trein om 20 over 4 vertrekt, dan is het plan om om 10 voor 4 de
bus naar het station te pakken vanaf de Uithof geschikt.

Het is belangrijk om de betekenis van elk van de vier agent componenten
duidelijk uiteen te zetten. Dat is om verschillende redenen belangrijk. Eén
reden is dat een programmeur om te kunnen programmeren in de taal moet
begrijpen hoe een 3APL agent werkt. Een andere reden is dat het precies
vastleggen van de betekenis van de taal ook duidelijk maakt wat er allemaal wel
en niet mogelijk is met de taal. Een wiskundige definitie van de betekenis legt
de uitdrukkingskracht of expressiviteit van de taal ondubbelzinnig vast.

Een formele definitie van de taal 3APL wordt in hoofdstuk 3 gegeven met
behulp van een operationele semantiek. Een operationele semantiek beschrijft
welke acties een agent in een bepaalde toestand kan uitvoeren. Uit deze formele
beschrijving wordt duidelijk dat de focus in 3APL ligt op de mentale wereld van
een agent. Een agent kan door middel van acties zijn kennistoestand veranderen
en plannen bedenken om een doel te bereiken. Een concreet verband met de
omgeving waarin de agent ‘leeft’ kan echter niet worden vastgelegd met 3APL.
Het is dus wel mogelijk om een robot te programmeren met 3APL, maar de
fysieke aansturing van de robot’s camera’s en wielen moet als een apart software
probleem gezien worden. Het voordeel hiervan is dat bij het programmeren
van een robot de verschillende deelproblemen goed uit elkaar kunnen worden
gehouden.

Een bijzondere eigenschap van 3APL agents is dat ze niet alleen plannen
kunnen bedenken, maar ze op een later tijdstip eventueel ook weer kunnen
wijzigen als dat beter uitkomt. Ook al mag dit de lezer als vanzelfsprekend
voorkomen, binnen de informatica is dit een controversieel onderwerp. Een
3APL agent is namelijk een programma dat zichzelf kan modificeren en dit
type programma’s zijn een stuk complexer dan programma’s die zichzelf niet
modificeren. Reden genoeg om een heel hoofdstuk te wijden aan de practical
reasoning rules die deze zelfmodificatie mogelijk maken.

In de hoofstukken 5 en 6 wordt 3APL vervolgens uitgebouwd tot een multi-
agent taal en wordt een applicatie voor het plannen van tijdstippen voor ver-
gaderingen beschreven. In multi-agent 3APL kunnen meerdere agents met
elkaar communiceren om informatie uit te wisselen en elkaar om hulp te vragen.
In de applicatie wordt communicatie tussen meerdere agents gebruikt om te
onderhandelen over een passend tijdstip om elkaar te ontmoeten. Hierbij moet
in het oog worden gehouden dat de agents voor hun gebruikers onderhandelen,
maar de gebruiker van een agent zelf zich aan het door de agent afgesproken
tijdstip moet houden.

In het tweede deel wordt 3APL vergeleken met een drietal andere agent pro-
grammeertalen: AGENTO, AgentSpeak(L) en ConGolog. AGENTO is een pro-
grammeertaal die niet formeel gedefinieerd maar informeel geintroduceerd is.
Omdat toch vooral een formele beschrijving precies maakt wat de verschillen en
overeenkomsten tussen talen zijn, wordt een operationele semantiek ontworpen
voor een substantieel fragment van AGENTO in hoofdstuk 7. In hoofdstuk 8
komen we terug op de expressiviteit van 3APL die formeel is vastgelegd door
de semantiek van de taal. In dit hoofdstuk wordt een methode bestudeerd voor
het vergelijken van de uitdrukkingskracht van verschillende (agent) program-
meertalen. Deze methode wordt in hoofdstuk 9 en 10 gebruikt om formeel te
laten zien dat 3APL dezelfde uitdrukkingskracht heeft als AgentSpeak(L) en
ConGolog en misschien meer.

In het derde deel bespreken we een belangrijk probleem uit het agent onder-
zoek. Tot zover heeft het onderzoek in dit proefschrift zich voornamelijk gericht
op programmeertalen voor agents. Een programmeertaal maakt het mogelijk om
vast te leggen (te programmeren) hoe een agent iets doet. Een agent programma
legt meer de nadruk op de operationele werking van een agent. Het is ook mo-
gelijk meer de nadruk te leggen op de specificatie van wat een agent doet. Spec-
ificaties worden opgeschreven in een logische taal. Tussen programmeertalen en
logische talen bestond tot nu toe echter nog altijd een kloof in het agentonder-
zoek. In hoofdstuk 11 wordt de oorzaak voor deze kloof geidentificeerd. Het
probleem is dat een doel in een programmeertaal een operationele betekenis
heeft, terwijl in logische talen een doel een omschrijving is van een gewenste
toestand. In een programmeertaal lijkt een doel op een plan dat bijvoorbeeld
beschrijft dat je je jas aan moet trekken, en daarna de bus moet pakken. In een
logische taal beschrijft een doel de eindtoestand dat je de trein wilt halen. Om
dit verschil te kunnen overbruggen wordt een nieuwe programmeertaal GOAL
gedefinieerd waarin een doel beschrijft wat er moet worden bereikt. Voor deze
programmeertaal is het mogelijk een temporele logica te ontwerpen die gebruikt
kan worden als specificatietaal voor GOAL agents.

De taal GOAL overbrugt de kloof tussen agent logica’s en agent program-
meertalen, maar bevat helaas niet alle planning mogelijkheden van 3APL. Het is
een interessante open vraag voor vervolgonderzoek om te bepalen of het mogelijk
is het beste van beide talen te combineren.

Curriculum Vitae

Koen Hindriks werd op 29 december 1971 geboren te Groningen. In augus-
tus 1990 behaalde hij het VWO diploma aan het Gomarus College eveneens
in Groningen. In september van datzelfde jaar begon hij met de studie Infor-
matica aan de Rijksuniversiteit Groningen. Hij volgde de specialisatierichting
Theoretische Informatica en studeerde in 1996 af op het onderwerp Logica’s
voor Multi-Agent Systemen.

Vanaf half oktober 1996 tot en met oktober 2000 was hij in dienst van de
Universiteit Utrecht als AIO in de groep Intelligent Systems van Prof. dr.
John-Jules Ch. Meyer. Hij verrichtte daar het in dit proefschrift beschreven
onderzoek. Gedurende dit onderzoek werkte hij in 1999 vanaf april tot en met
juni als gastonderzoeker van Prof. dr. Hector Levesque aan de University
of Toronto. In november 2000 trad hij in dienst bij Andersen Consulting te
Amsterdam.

245

